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NATIONAL ADVISORY COMMITTEE FOE AERONAUTICS 

TECHNICAL NOTE NO. 998 

NUMERICAL PROCEDURES FOR TEE CALCULATION 07 TH3 

' STRESSES IN MONOCOftUÜS 

III - CALCULATION 07 TEE BINDING MOMENTS IN FUSELACS FRAMES 

By N. J. Hoff, Paul A. Libby, and Bertram Klein 

'•••<••• •   SUMMARY 

1 

This report deals with the calculation "of «he bending 
moments In and the distortion« of fuselage rings upon which 
known concentrated and distributed loads are acting.  In the 
procedure suggested, the ring Is 'divided into a number of ; 

beams each having a constant radius of curvature.. The forces 
and moments caused In the end sections of the beaits by Indi- 
vidual unit displacements of thu end sections are listed In 
a table designated as the operation« table In conformity with 
Southwell's nomenclature. 

The operations table and the external loads are equiva- 
lent to a set of linear equations.  For their solution- the 
following three procedur.es are presented: 

1. Southwell's raethod of systematic relaxations.  This. 
is a etep-by-step approx1nation procedure guided by the phys- 
ical interpretation of the changes In the values of the un- 
knowns. ••:'. 

2. The grovdng unit procedure In which the Individual 
beams are combined successively into beams of increasing 
length until finally the entire ring becomes a single beam. 
In each step of the procedure a set of not more than three 
simultaneous linear equations Is solved. 

3. Solution of the entire'set of simultaneous equations 
by the methods of the matrix calculus 
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In order to demonstrate the manner In which the calcula- 
tions may bs carried out, the following numerical examples 
are worked out: 

1. Curred beam with both lte end section! rigidly fixed. 
The load Is a concentrated force. 

2. Sgg-ehape ring with symmetric concentrated loads 

3. Circular ring with antisymmetric concentrated loads 
and shear flow (torsion of the fuselage) 

4. Same with V-braees Incorporated in the ring 

6. Egg-shape ring with antisymmetric concentrated loads 
and shear flow (torsion of the fuselage) 

6. Same with 7-braces Incorporated In the ring 

She results of these calculations are checked, whenever 
possible, by calculations carried out according to known 
methods of analysis.  The agreement Is found to.be good.' 

The amount of work necessary for  the solution of' ring 
problems by. the methods described In the present resort Is 
practically'Independent of the degree of redundancy of the 
structure.  For this reason the methods are recommended for 
use particularly In problems of rings having one or more In- 
ternal bracing elements. 

.HfTEODUOTIOir 

The methods and the formulae used In the 
monocoque aircraft structures have been develo 
variably for cylinders of.circular, or poseibl 
cross section and of uniform mechanical proper 
actual .aircraft such structural elements.are s 
found.. Unfortunately, the direct methods of a 
little suited to cope with problems Involving 
sectional shapes, irregular distribution of re 
ments, .concentrated, loads, and cut-outs. It 1 
that' the indirect methods recently advanced by 
and particularly by 8. V. Southwell, (referenc 
promise a solution of such problems. 

analysis of 
ped almost ln- 
y elliptic, 
tlee.. Tet, in 
eldbm, .1f ever, 
nalysls are 
comulex cross- 
lnforcing ele- 
s believed 
Hardy Cross, 
es 1 and 2) 
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' ¥he; fundameort-al, tJSust'if ieat.'io'n  for  this   indtrest  approach 
llea   In   the   compara-tlire  -erts'e with  which  .linesies 'In  a   20m- 
plsx   structure  car»--.h*-Jife'loulatJed     lf.th.oy are  caused by some 
stipulated  simple- displacement,   while  the.d-et erminat ion   of 
the stresses  and displacements  caused by.known  external  loads 
is  often  very difficult;   or   even   impossible.      The  calculation 
of  the  stresses   in  a -eSall  unit   of  the  structure   corresponding 
to  given  displacements'   Is  known  as  the   "unit   problem"   in 
Southwell's  relaxation 'method.      In  this  method   the   individual 
displacements   involved   ir.  the unit   problems» nre ,-e-o'mbined   by  a 
trlal-and-error  procedure' until  a. displacement   pat'tern  of  the 
entire  structure   is- found  that   corresponds-to  an   equilibrium 
of  the  internal- stresses'and  the   external   loads   over  the   en—   • 
tire, structure. • '•*.-' 

.•-''. • 

In  parts   I and- if  (references  3  and. 4)   of  the present   in- 
vestigation   a   corcveTj'l'ent  unit  problem :wae devis"ed  and  solved 
for the  purpose  of   calculating  the  stresses   ir.  s'heot-and- 
strln,g.er.  combinations'.     Furthermore,   a  systematic procedure  of 
combining, the  individual  operations. was   developed which re- 
sults   in  e>-rapid- approach  to  the  actual  state   of  distortions 
caused by.the known loadr   acting upon  the  structure;     The- 
stresses', calculated  by  this • procedure  were  found  to be   in 
reasonable  agreement   with  those  measured  in  experiments. 

Injthe .present-report   the   indirect .method   Is  applied  to 
the  calculation,  of  fcheTbending moments, in rings   (frames)  upon 
which  kn.öwn. ext.ernail-  loads  arc-  acting..      It -is   planned  to  dis- 
cuss- in   the  future   th'e-stress' problem  of  monocoque fuselages, 
which  are  combinations.of  rings'and  stiffened   curved panels. 

In  the   course  of  the  present   in 
that  the   calculations   necessary for 
problems   are  rather   laborious.:     3?or 
was  worked  out  numerically and the  r 
graphs   and tables   in  part   IV  (refere 
turned  out   that   in many ring problem 
diet  the  most   likely  displacement  pa 
magnitude   of   the  displacements.     Thi 
pated  at   the  beginning  of   the  presen 
the  earlier   work  it   was   found  that   t 
forced  panels   could  be predicted  wit 
accuracy.      It  appears   that  with  ring 
visualising  the  amounts   of  rotation 
the   individual  ares,   and   to  sose   ext 
placements,  while  it  is'possible 'to 
well  the  radial  displacement  pattern 

vestigations   it  was   found 
the  solution   of  the unit 
this   reason   the   solution 
esults   r>re  presented .in 
nee  5).     Moreover,   it 
s   it   is   difficult  to' pre- 
tterns  and  the  order   of 
8  fact  was   not  ant lei— 
t   investigations   since   in 
he  displacements   of  rein- 
fa  a  reasonable  decree   of 
s   the  difficulty .lies   In 
.of   the   end   sections   of 
•ent   the  tangential  dis— 
anticipate   comparatively 

On  the   other  hand,   the 
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Interaction between rotations, tangential displacement a, and 
radial displacements la very strong, and the final trending 
momenta,•sheAr forcea, and normal forces In the eectlohs are 
often the snail- differences of large values caused by the In- - 
dividual distortions.. Unfortunately, the Southwell procedure, 
becomes very slowly convergent";, that Is, i't yields the. •eqrr.e.ct 
final results only after a very great number of individual 
operations, if the steps in the relaxation - or the individual 
displacements - are. undertaken at random, without a precon- 
ceived picture 'Of the final pattern of deformations. 

•In order to qvar.oome this difficulty, a 
been worked out which might be termed the "pr 
growing unit." In it the structure is broken 
the unit problems are solved, and the operati 
up in the same manner as was suggested by Sou 
other hand, the solution of the stress proble 
and-error procedure of the method of systemat 
Is replaced by a procedure Involving'the coir-b 
Individual units into,units of increasing six 
loads are balanced, then by solving sets of tw 
taneoua linear- equations involving the influe 
of the large units. .The new procedure is rea 
and fast, as may be seen from the numerical e 
In the  body of the .paper. 

procedure has 
ocedure of the 
up into units, .., 
ons table is set 
thwell.  On the 
m by the trlal- 
lc relaxations 
inatlon of the 
e.  The external 
o or three simul- 
nce coefficients 
sonably simple 
xamples contained 

Finally, the examples presented In this report were also 
calculated by considering the so.-ealled operations table of 
the-Southwell method as a,set .of simultaneous linear equations, 
and solving it by the use of the matrix calculus.  In the ap- - 
pendlx a simple explanation is.given of the matrix calcula- 
tions necessary for the solution., 

• For the under standing .of fhe'present report familiarity 
with the Southwell and the Hardy Cross, methods, or with parts 
I and Z'l.i of this investigation is'not required. 

•IM:«,- investigation, conducted; at the Folytechhic Instl.tu.te 
of*. 3rc-ok<Lyr., was sponsored by and conducted with the* financial 
aaai'at-ana« -.o-t- the- National Adyi sory'Oommittee for Aeronaut!«*. 

•'1 •    :..••• 

SVMBOI'S 
i-1 
-..••'- •    -.. h . , * 

qroBs-sectional. a.f ea  of  bar;   or' a point   on  a  ring; 
the  Included  area "of a ring;-  or "a  matrix 
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•I , 

effective  eh, «•  area (based  on  tension) 

lever  arm of shear  fi ow 

•t  Of  cj  d, 

B.   C,  D,   E 

B Young« 

matrix  coeffieienti 

*.y 

points on a ring 

modulus of elasticlt; 

shear modulus 

moment of inertia of 

Matrix coefficient 

cross section; or identity matrix 

lere loped length of ring 

bendi 
segment 

ng moment; or a matrix 

end moment react! 

•hear' fl 

ng cm, bar or 

ow acting along Dar 

on constraint 

end  radial reaction  acting  on  bar 

radius   of  curvature  of 
or on constraint 

end tangential 

« ring segment 

or applied torqu 
reaction acting on bar 

or on constraint! 

strain ent "gjr 

«"•Placement °*  * point in t 

displr. cement of 
angential direction. 

a point in rndinl di 
sh ear for 

rectlon 

ce acting on a cross sectic 

rotation of 

rectangulnr 

a suction of a DftP 

sordinate; or an unknown 

i or an unknown quantity 

an unknown quantttj 

angle subtended by rl 

quantity 

ng segment 
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y        section—length parameter.(AIs/l) 

A   determinant 

K - 1 + (e»/Y) [(l/l) +,!]••.  . 

a - 1 - (PSA) [(1/t) +1] 

v - (G/3) 

( » (A*/A); or angular coordinate 

9   angular coordinate 

it)   rotational coordinate 

The eynbols used to denote influence coefficients are dc 
fined in the following manner:     ' 

The term (Tb) stands for the 
by a unit movement in the directi 
is that of the force  H  or  t, 
(nn) is the moment due to a unit 
tangential force arising from a u 
further,: to distinguish, the .react 
those at the novatle end, the sub 
ployed.  Consequently ( nt ).-r- ie  .th 
end of the curved bar as a result 
pfa'eement of the'movable •.end-, whi 
gentlal force at the movable end 
placement of that end. 

force or:moment  a- caused 
on of  b  (which direction 
or of th'u moment __J').  Thus 
rotation, while (,tr ) 1B the 
nit "radial" displacement. 
ions at the fixed end from 
scripts T     and  I!  are fjm— • 
e  moment arising at the fixed 
of a^unit tangential dis— 

le ( tt);;  stands for the tan- 
due to a unit tangential dis— 

The moment, radial force, and tangential force caused by 
a constant sH'earfldw are denoted-by the symbols  nq, rq, and 
tq,  respectively.  The values are valid for the end of the 
bar toward which the shear flows.  At the opposite . ond the 
reactions considered here are acting from the support upon the 
curved bar.        •:•;,.•..•• , . . 

•  I 
! > 

I 

DEVELOPMENT OP THE RELAXATION METHOD WITH THE AID OF AC EXAMPLE 

The Structure 

The structure used as an. example in the development of 
the procedure Is shown in figure 1. 'It' is a curved'beam of 
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square cross sect ion -which may be thought of ps an assembly 
of two cantilever quarter circularibeams  AB  and  AC  joined 
rigidly at point  A.  As each of the two curved beams could 
support by Itself the 100. pound load applied at  A,  the dis- 
tribution of the load to the two beams cannot be determined 
by the laws of statics alone.. The problem is three times re- 
dundant, since the unknown stresses in the cross section at 
A  add up, in general, to an unknown normal force,': an unknown 
shear force, and an unknown mocent in the plane of the circles. 
There cannot be any force and moment'resultants perpendicular 
to the plane, since the external, load acts in the plane of the 
curved beam. 

The problem of the load distribution can be solved only 
by taking into account the deformations of the structure. 
This can.be done conveniently if the structure is considered 
cut at  A  and the deformations of each quarter—circle are 
calculated independently.  ./hen these calculations are com- 
pleted, the continuity of the actual structure can be re—es- 
tablished without difficulty through a proper choice of the 
unknown moment and forces ,in section  A,  as will be' shown 
later. 

Unit Problem    ,,} 

The structure is broken up into two units; namely, the 
quarter circles  A.B  and  AC,.  The unit problem consists in 
finding the tangential (.normal) farce . T,  the radial (shear) 
force  R,  and the moment  II  (see fig. 2) under the action 
of which the free end point  A  of the unit undergoes any pre- 
scribed displacement  u  in the. <x  direction,  v  in the  y 
direction, and any prescribed rotation  w,  which latter is 
considered positive if It'iSt. counterclockwise .like u>:  The 
unit problem can be solved best by calculating first  u, v, 
and w  caused ,by unknown fqr<;es %,.  and , R(. •.  .and an unknown 
moment  ",  and determining the unknowns T,f t ery^rds s'- as to 
obtain the prescribed values of t.he • iisplacements and the flo- 
tation.  In conformity with standard practice extensi .r.al and 
shearing deformations will be neglected, since they are much 
smaller than the bending def ormat io'ns. 

The bending moment H en . ed by I, R, 'and IT in a sec- 
tion of the curved beam defined by the angle cp. (see fig. 3) 
is given by 

H Tr ( 1 - cos 9) + Rr sin <p + N (1) 

: 
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The  relative  rotation     dw     of  two  normal   sections   of  the 
curved  beam  an   Infinitesimal  distance     ds     apart 

dw * Mds/(EI)  =  Mrd<p/(EI) (8) 

Since point  B  is fixed, the rotation  wA  of point  A. cai 

be calculated from the integral 

•/' 

r/« 
[Mr/(SI)] d<p 

1/ 

Substitution of N  from equation (1) and Integration yields 

'{ wA • (r/EI)J [(TT/3) - 1] Tr ••- Rr + (ti/2)ll 
* 

(3) 

When the infinitesimal element of the beam at <p under- 
goes a rotation dw, point A Is displaced On Infinitesimal 
distance  du  in the  x  direction, where 

du = r( 1 - cos q> )dv (4) 

With  S  fixed, the toatl displacement  uA  of point  A  li 
the  x  direction becomes 

UA f 
n/s 

•du.= (r*/EI) f M(l • v) A -e 

Substitution *nd, integrition  gives 

uA.i (ri"/Sl)t('u3:n/4);-,*"] Tr + (l/S) Rr + C(n/s) -l3JK   (5) } 
' When the lnfiniteslmal element of the beam at' qp under- 

goes an Infinitesimal rotation  dw,  point  A  Is displaced an 
lnfiniteeimal.dlstance.: dv  in the  y  direction! 

••}  (.:•:..'• , dv•• r »in-tp-   i.M (6) 

Considerations similar to those stated before give 

/ 

r/i 
dv = (r*/El) r i/» 

M s in tp d «p 

i 

; 
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and 

i (ra/Sl) |(I/a) Tr + (rt/4) Rr • H*l       (7) 

The task o 
section A eau 
II has thus oee 
and the values 
cause prescribe 
tion can be car 
equations (3), 
when the values 

tlons that foil 
ve'iilent to have 
ter'ized "by the 

f det ern. tnlnr the 
sed by the forces 
n completed. The 
of T, H, and H 
d -distortions • u^ 
rled out by solvl 
(5), and (7) for 
of uAi TA< and 

ov later in this 
t.he solutions of 
following groups 

(a) uA  =  1 

(b) uA =   0 

(c) uA  *  0 

VA 

''A 

•displacements   of   the   erfd 
T     and     ?•     and   the  moment 

problem must'now be inverted', 
must be calculated that 

;•  *A, and  wA.  This cal'eula- 
ng the three simultaneous 
the unknowns  T, R, and  N 
VA  are given.  In som'puta- 

report it will be ..f.ound con-, 
three unit problems eharac-i'^ 

of prescribed distortions: 

0 wA - 0 

'it    '.     ~.  l1 .:•"•« 
1 wA -«• -Oi; . : 1 '. -. 

0 wA = 1 

The   numerals     1     denote   units   in   any   convenient -and. consistent 
system  of  distances  and   angles. .-•••• ..'<••• 

{_•      The   solution  of  equations   (3), :(-5):,   and   (7)   corresponding 
to  values   (a)   of  the  distortions   1B 

T  •  48.87   (EI/r3) R  =  -39.37   (EI/r3) 

When values   (h)  apply,the   solution  is 

T   = -39.37   (EI/r3)        R  =   48.87   (EI/r3) 

When  values   (c)  apply, the 'solution     is 

T   =  9.484   (EI/ra)      " R   =   -ili. 03   (El/ra) 

I • 9.484 (EI/r3) 

-13.03 (EI/r8) 

H = 5.449 (EI/r) 

>.:--;-. •    •:.-••   * . )IIV- •: 
In computing the above values a calculating machine had to be 
used, since small differences of.large numbers had, to be de- 
termine^.,, The values can be verified by: aubs.titution in equa- 
tions (3),: (5), and .(7.), respectively. 

In subsequent calculations, use will be made of quanti- 
ties denoted as "Influence coefficients." Influence eoeffi- 
clent €i     Is defined as the tangential force  T  caused by a 
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*»  •  9.484   (»I/r
a) 

Influence  coefficient.     Ä  "^iT"'*      "  = 5-449   <"/r>   (8) 

12 —-•»••*y as 
•* • 43.»7 (IX/.*] r* 

,,.. l*1/r ' • W - -39.37 («/r») 

" ' *• • -K3.03 (BI/r3) 

r.t tr 
ss = fa 

. nr • r.n • (9.) 
The validity of equations (9) follow, directly from the expres- 
sions given earlier as the solutions of eauatlons (3), (5), and (7). 

The numerical values of the Influence coefficients will 
now be computed for the example at hand.  'Xhe mooont of. iner- 
tia of the cross section of the curved bean Is 

1 = (l/»>Vl* •= 0.005S laoh« •. - - - -u^ inch 
The modulus of 24s T „1  , 
P".  H.hee    

24S~T .1-.I.U. a,loy i. elven a,  , = io5 x io< 

SI   = 
54.600 pound-inches" 

•  '•• . 

(10) With  beam AB 

XI/r  -  5460  inch-pounds    «/,«  . "... 
C„„„ "     46  Pounds    J!I/P

3 -   s,   . 
consequently. I    ' 54,6 pounds 

Per'inch 
"   "  234° Pound,  per   lnch R 

•  =  5170 pound. 1   " "3146  P°Unia P6r   lnchl 

»  = -W10 pounds - -     fr " ?349 ?9U^' Per   *«hl(U) 

«««..«    AC     ,;„ •: =  89'706  M^POund.    j.    . 
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moment.  Since the radius of this beam is 20 inchee, the in- 
fluence coefficients have the values 

tt = 392.5 pounds per inch 

tn = 1292 pounds per radian 

tr • -268.5 pound per inch J 

rr • 292.5 pounds per inch ((12) 

rn ».-1777 pounds per radian   nn • 14,850 inch-pounds per! 
radian     J 

The Operations Table 

Iti s  pose 
point     A upon 
structure there 
end  point A     o 
direction and  t 
beam    AB. A   si 
placement in th 
coordinates   (ta 
two  dlepl acemen 
ment   caused  at 
easily  ca Lculat 
given  in ;he  pr 

lble now to consider the effe 
the complete structure. 'Sine 
is no cut through the curved 

f beam AC is always dieplac 
hrough the same distance a« i 
r.rcle "unit operation" is defl 
e direction of one of the thr 
ngentlal, radial, rotational) 
ts are held unchanged. The f 
point A during any unit ope 
ed with the aid of the lnflue 
ecedlng article. 

ct of displacing 
e in the complete 
beam at point  A, 

ed in the same 
s end point  A  of 
ned as a unit die- 
ee displacement 
while the other 
orces and the co- 
ration can be 
nee coefficients 

In order to displace point  A  1 inch in the tangential 
direction and in the positive sense indicated in figure 2, 
the following forces and moment have to be applied to point 
A of bar AS: 

T • 2340 pounds -2146 pounds  N = 5170 inch-pounds 

In a similar manner the forces and moments can be calcu- 
lated that are necessary to displace end point  A  of beam AC 
1 inch in the tangential direction.  It is advantageous to 
adopt the same sign convention for the forces and moments at 
A  independently of whether they are derived from beam AB  or 
AC.  If the sign convention of flgur'e 2 Is used, the positive 
unit tangential displacement of point  A  of beam AB  corre- 
sponds to a negative unit tangential displacement of point  A 
of beam  AC  in the system of coordinates shown in figure 3. 
Moreover 

^AC = -TAB »AC • «AB "AC = -"AB 

where the subscript  AC  refers to beam AC  and the coordi- 
nate Bystem of figure 3, and subscript  AB  to beam AB  and 
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•I, 
I I 

the  coordinate   system  of -figure  2.  ' Hance. the  following  forces 
and  moment! are neeeeiary In  order  to cause  point    A     of  beam 
AC    to displace  1   Inch to  the  right:   ... 

T  •  292.5 pounds     R  =  268.5 pounds 1292  Inch-pounds 

Altogether,   the   following  forces  need  be   applied   to  point 
A    to displace   It   (and   consequently the  ends   of  both bare    A3 
and    AC)'l   Inch  to  the   right: 

I   *  2632.5 pounds     R  =  -1877.5 pound«   N  =  6462  Inch-pounds 

The effect of a unit displacement in the positive radial 
direction can be obtained in a similar manner. Beam' AB re- 
quires 

-2146 pounds   R  =  2340 pounds N -7110  inch-pounds 

Vlth  the   system  of  coordinates   of  figure   2  the   forces  and  the 
moments  necessary  to  move point     A     of beam     AO     1  inch upward 
are 

I   =  268.5 pounds     R  =  292.5 pounds     H  =   1777   Inch-pounds 

Altogether, 

,--T  =  -1877.5 pounds   R a   2638.5 pounds     N  =  -'5333  lnch'-p'ounds 

Finally,   in  order   to  rotate  end     A     of   bar'    AB     in   the 
positive     N     direction  through  an  angle   equal   to  a radian,   the 
following! forces  and   moment   must   be' ap-ollc.4   to  point     A     of 
bar    AB: 

T   =   5170 pounds     R  =  -7110  pounds'1 . If ' =   29,700  inch-pounds 

Vlth the   sign convention   of  figure   2 bar/ AC     requires  for  the 
same  rotation 

• T   =  1?92 pounds    R  =  1777 pounds. ' N  = ,14,850 Inch-pounds 

Altogether 

T  =  6462 pounds       R = -5333  pounds     H  =   44,550  inch-pounds 

It might be mentioned that all the values just calculated 
are fictitious in the sense that they would be the actual val- 
ue.s. of the forces and moments only if the limit of proportion- 
ality  of  the  material  were  higher   than  the   stresses  caused   by 

•I 
') 
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1 
the  fores*  «nd  momenta,   and  If the   large   distortions  did  not 
affeet.the "equilibrium..^: If;  however,'   both the   foreea  and  the 
dlaplacemente are divided by,   aay,   100, rno  objections  can be 
raised against   the.'vaUAity. of; the  data   Jttat   calculated. 

The  resulttZ°t' the   calfculations  are   summarised  in  the 
table  that, follows:     ...l";''. 

No.. 

[1] 
[2] 
[3] 

Table. liVOberätlone Table' '"• 

'   Operation   , 

u » 1 Inch' 
T • 1 Inch 
W • i radian 

T 
.; (ib) 

-8633.5 
+1877.JS 
-6468 . 

H 
. (lb) 

+1877.5 
-2633.5 
+5333 

H 
(In.-lb) 

-6462 
+ 5333 

—<k'«E F5C1 

The table is'known as the "operations table."  In it the 
foreea and momenta previously calculated appear multiplied by 
(-1).  In other words, the foreea and momenta Hated are not 
those,to be applied to the structure at point 'A  in order to 
eauae the preecribed distortions, but their reactions. 

Relaxation Table 

' The operatlone table will be'used now in Order to estab- 
lish the distorted shape the structure of figure 1 assumes 
under the action of the 100-pound load applied at' point  A. 
It la convenient to imagine that a rigid' wall'1 is'arranged be-* 
hind the structure parallel to the plane of the curved beam, 
and that by a clamping device the beam la rigidly attached to 
the wall at point  A.  Moreover, the external load day be 
thought of as being suspended from the clamping device. 

The structure in its original, nondistorted form and the 
external load are thus in equilibrium, as long as the clamp 
and the wall are there.  It la the purpOBe of the "relaxation 
procedure" to transfer the load from the "constrainta" - that 
la, from the wall and the clamping device - to the curved 
beam in a number of successive operations during the course 
of which the beam gradually assumes its final distorted shape. 
A record of the Individual operatlone la kept in the so-called 
"relaxation table" (table 3). 
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In the first row of the relaxation table the external 
loadi are listed.  In the present example the only external 
lead Is the 100-pound load which act« In the negative radial 
direction if, as before, the' sign convention of figure 2 Is 
adopted. • inspection of the.operations table reveals that op- 
eration 3 Is beet suited for balancing the vertical load. 
Consequently, the clamping device is loosened In a manner to 
permit a vertical translation of section A without allowing 
It to translate horizontally or to rotate..  Since, according 
to the operations table, 1-inch dl»placement upward would 
cause a vertical downward force of 8632.5 pounds to act fron 
the structure upon the clamping device, a downward (negative) 
displacement  v » 100/(-3632.5) • -0.038 inch must be under- 
taken.  The second row of the relaxation tatle Is now filled 
In with the values of the second row of-the, operations table 
multiplied by (-0.038).  It may be seen that operation just 
.undertaken: namely, the vertical downward displacement of 
0.038 inch, caused the curved beam to exert upon the con- 
straint a vertical upward force of 100,pounds. -This force 
balances the applied load. 

Unfortunately, however, 
the curved beam to exert Uno 
force of 71 pounds to the le 
802' lnch-p.ounda. Thus, the 
a 'new unbalanced, horizontal 
are"Introduced. The system; 
since the clamping device an 
constraint - take care of th 
ment. The purpose of the re 
to approach gradually a stat 
clal constraints are jiot nee 
peratlve':, therefore, to bala 
and.:moment. However, before 
the clamping.device,must aga 

the displacement also caused 
n the constraint a horizontal 
ft,: end a' clockwise moment of 
Vertical' forces are balanced,, but 
force and a new unbalanced moment 
" öj'"course, i« in equilibrium, 
d the rigid wall - that is, the 
e horizontal force and of  the mo- 
laXatlon procedure, however, is 
e of distortions in which art.ifl- 
ded for equilibrium.  It is lm- 
nce out the new unbalanced force 
any further steps-are undertaken, 

In''be tightened completely. 

I 
i 

4 

I  : 
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Tabla  3.- Relaxation Table 

T H I 
/  _ (1») (ID) (in.-in) 

Bjtfrnal fore«'-*? 0 -100 ...   ,°     '•" 

-o 038 x r»i - =7i i°S - - - - -"--'S0? - - -w.wao a   t"J _7l Q _20a 

- «...       -r, 1 ?1 -61 175 

-°.-087x,^] - -5 :si -. :*?" 

siifrn- * es] - =3* - - - - - :-*i ----'- :--i°? - - 
?iuT-'v  ....u  • _36     .-.*••   o •"••••••• —i-aro •. 
-• -t vs.'i a-. : . . „,• •• • 

-*4w'Mti.)'••:   - -8| - -— '=3 - -••-.-- ••'.-• «5! -'* 0 -26 -42     • 

-."/     i«*. :: .(•;:.'   ;• •   *i*~.   ,- • •  c '   •* ' "•:   "••*,, 
«0.00.9-*   ['»3    ,*.>!.,. .f:,f*18  -_--•-  -2S _,.,,,     ._, .._>_  ;;.?•? ._-    . 
-•>       ••      •       -   ..-r.'-i-.i,   <:••••?» ;..        0    ...   •    ;,..•;••••   -SB     ,,." 

-0,007-28 •*'-.[»a": iw"»^ÜA2 /.-.Vsi-i - - *•'- - - ,-4? - -> 
:   i -i •:    .•;•;..    •...,..;    -   r-•    0 • ... .:-1.4 4ft 

(.'-    ' .   ' i   ' r '   •'    T •'    '^  • .' '? !' * •'• •;"•!•*• .      • i .: • 'I        ^ ..   •      . "' 

-o.'ob'esa V [33    "*''';  .- :=1'9-; - - -• - _i* - =88 - - 
' •• ••    ' -'16    •'••• 0 20 

'» • i   ! ij • !••! i i •       i: -r »> ,        ,      , . • ,    i , 

-0.003ft X   [11 x      -  -IP -2 26  _  _ 
•.- ;.;:•.•••;.. • •        o -?     45 

-0.OB2&6  x •P8]    '• _.-_>_-. Z ...  =H  -  _- 
.    .   , -.- .   • _-e 0 • ay , 

0.000696  X -pj    . _   .-i ______  _ .31  _  _ 
 -9 4 0 • 

-0.0C342 x   [1] -  -  § -§  _ .23 _  _ 
   0 -a  22 

0.000493  x   [3]  -3 ?  _' _ z^S -  - 
-3 10 
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Tha unbalances are tha- aigehralc ~*nm 
rain»» la rewi 1 and 3. They are Hated 
da «bed ljne.. The question arises now whe 
•hould "be balanced fir et. Because It' Is 
final dletorted »haps of the structure wl 
tele horizontal and vertical translation» 
only a alight rotation, it le advantageou 
fir at on the cancellation of the unhaflanc 
than of the moment. Tor this reason, ope 
der.take'n. .The clamping device la again 1 
auch a manner aa to permit a horizontal d 
the same time to dlaallow any vertical tr 
tlon. The ensuing horizontal motion will 
« • 7l/(-S633.6) - -0.027 inch. Kultlpll 
Hated in the first row of the aperatlona 
sufctraetlon yields the remaining unoalane 
quahtltlea recorded In the fifth row of t 

S of corresponding 
in row 3, under the 
ther  T  or S 
expected that the 
11 Involve consider-' 
of section a,  but 

a to concentrate 
ed forces rather 
ration lie now un- 
oosened, but now In 
1»placement, but at 
anslatlon and rota- 
coir.e to a atop when 

cation of the values 
table by -0.027 and 

ed, or "residual," 
he relaxation table. 

According to the fl 
balanced forces acting n 
anced vertical force of 
eompanled by an unoalane 
quently, the two dlaplac 
lng the unbalanced vertl 
value, hut only at the e 
moment at the same time, 
therefore, until all the 
enough to be neglected 1 

fth row there are no horizontal un- 
ow upon the constraint, hut an unhal- 
51 pound appear a again, which la ac- 

ed moment of -27 Inch-pound.  Conse- 
ementa undertaken succeeded In reduc- 
eal force to 51 percent of its initial 
xpense of Introducing an unbalanced 
The relaxation must he continued, 
residual quantities become small 

n engineering calculations. 

- The clamping device Is tightened and loosened again suc- 
cessively, but always In a manner to permit only one single 
type of motion at a time.  The effect of these notion* upon 
the force* and moment is calculated In the relaxation table. . 
After nine operations the reeldual forcee are  T = -5 pound, 
H * 0,  K a 31 Inch-pounds.  It ia thought that now It is time 
to permit section A to rotate.  Thus, operntlon 3 is under- 
taken and recorded.  This Is followed by one more operation [lj 
and again operation [3], after which the reeldual* are small 
enough to be neglected. . 

Because of the great number of arithmetic operation* In- 
volved in the preceding calculations. It is well to check the 
reeulta.  A repetition of all the computatlone would be very 
time consuming.  Fortunately, this 1* unnecessary since a 
Buch simpler check 1* available.  The sum of all the vertical 
displacement* can he obtained hy simple algebraic addition: 

Ttot * -0.07588 Inch 
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Similarly, 

utot * -0.05514 inch 

*tot -0.001189-PftdUn. 

The fore«« and the moment caused by' each one of these total 
distortion« can be obtained by multiplying «re corresponding 
toy In the operations table.  The values computed are.entered 
In the "check table."  The algebraic sum of each column of' 
the cheok table represents the final residual quantities. 

" "  For the present example these calculations are carried 
outJin table .3.. .In the.absence of errors the residual quanti- 
ties of the last row of the check table should be identical 
with the residuals listed In the last row of the.relaxation 
table.  This is obviously not the case with the present exam- 
ple-   

. -•• '     ...£-,.. >• -.• 
Table 3.- Check Table 

Sxternal force 
u - .'0.05514 Inch 
• • -0.07538 inch 
v • 0.001189 radian 
Residuals 

T cm 
0 

145 
-141 
 =a_ 

E 
(lb) 

-100 
-104 
198 

6. 

(i,n..-lb) 

• 0 

'  366 
-401 
-53 
• 98 

Fortunately, there is no need for hunting for errors. 
Instead of doing so, a new set of relaxations can be carried 
out starting out from the residuals of the check table as 
the given external loading.  Table 4, the second relaxation 
table, presents these calculations.  It may be seen that after 
only five operations the residuals are reduced to 1 percent of 
the Initial external load. 
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Table 4.- Second Relaxation Table 

, .Jf, ... 
tib) 

Xxternal fere« 

H 
(lb) 

0 

N 
(In.-lb) 

-98 

.0.0032 x   [3] 14               '          -12.                                    98 
10                      .  -12.             .  .„..,,-.       -0 

[^^ttiXii^ -:lt V.--9  -   j •-'-   -   -13 -;*:.- 'vl:-'  --»*-   - 
.-.'     .1 .  .       .                   0    •             •>"   , •'..  -24 

-'0.1)0064  x   [3] ' 3                            -3                                    24 
-    • •• .4                            -3  •''.':'             " . .    . .. 0 

•+<>i00162 x   [1] 

ufV.    •           •          "        I" 
-0.000225  x   [3] . . 1 -1 10- _ 

1.                           -1                                      0 

Those results .are now cheeked in the second cheek table 
(t-abie 5).  The residuals of this are substantially the, .same 
aa those of the second relaxation table.  T he. "s" light devia- 
tions can be exptwirned by the inaccuracy of 's.ll4e'-rule. calcu- 
latip.ns, and by the omission of fractions of..'pound* and inch- 
pounds In all the-tables... 

The fact that errors need not be traced but can be 
lnated In a few additional operations is considered., one 
the major advantages of • the relaxati on:'pr ocedure '.. 

...•;*'...-•-'••• •••'•>•-••• •    ...,„: 

.»Table 6<- Second-Check Table ;    '.."''' 

elli 
of 

External   force 
u  • -0.0S362   Inch 
T  • -0.07984   Inch 
v - -0.001776   radian 
He siduals 

T ..'. - *:. 
(lb)  db) 

0 -IOC 
141 -101 

-150 210 
11 -9 

••/••? Ha •!•' 
(In.-lb) 

0 
346 

-426 
79 
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Direct  Solut.lenö.cf, th.e. Operations Table 

Tki  -operations  table.,. r.epr«-je^t a: a  «at   of  linear  equations. 
It  la ««ay to verify, that. t«*le„ 1 .can bis •rewritten In the  for» 

-8632.5 ,«  + 1877.6 v -  6468 v  + T-,,0. 

1677.5 u -   2632.5 v +  5333 v +: R  » 0 

-6463 u  +  5333  v  -  44,550  w    +   N .•. 0. 

(13) 

»bar« u, V-,' 'w are- tha- unknown displacements and rbtatlon, 
respectively, of section A; and I, E, N  are the given ex- 
ternal foreea and moment, respectively.  With the ValueJrof 
the external loads of the present example,equations (13} be- 
come: 

'• -2632.5 u + 1877.5 v - 6462 w « 0 • • 

1877.6 u - 2633.5 v + 6333 w -100 

( -6462 u + 5333 v - 44,550 w • 0 . 

(14) 

I   ' 

These equation!) can be aolved directly.  The solution la 

u u -0.0613 inch -0.0785 Inch w *  -0.00193 radian 
(15) 

Substitution In equations1(14) shov« that the accuracy is 
better than 1 percent.  The agreement, of this rigorous, eo.lu- 
tlon with the results obtained in the relaxation procedure is 
also good. 

It might be argued that there is no need for the relaxa- 
tion procedure If-the simultaneous- equations represented in 
the operations table can be solved directly without difficulty. 
This argument is Justified as far as the present example 1« 
concerned.  In many other, more complex problems, however, 
when the number of simultaneous equations Involved is very, 
large, the relaxation procedure may repreeent the quicker and 
easier solution. 

..^HKVUüfeMb *"**&••»JSiH 
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Calculation of tha Bending Momente 

The bending moment  In erection A can be easily calcu- 
lated with the aid of the influence coefficients of bar  AB 
given In equations .(11) .• or those of bar  AC  given in equa- 
tions (12).  If the distortions listed in equations (15) are 
used, the following bending moment  N&  is obtained for sec- 
tion A of beam AB; 

: >• r •••••:. •   .   ., 

HA • u nt + * nr + w nn 

- -0.0613 x 5170 • 0.0785 x 7110 L'0/00193 x 29.700 

• 235.4 Inch-pounds 

• 

• 

Ijf thoidi •ulacement     u     and  the   rotation 
positive   signs  in  order   t are  attributed 

     .w  i>v»|ii/  witr.  the   sign  convention 
figure  3  and  equations   (12),   the   following  expression  is   ob 
telne-1   for   section-A  of  beam    A3: 

When 

HA   »   0.0513   x   i292  +   0.0785  x   1777   +   0:00193   x   14,850 

M   234.4   inch-pounds' 

.     '-TheatKO  values, differ  by  less   than, 1   percent.     The  dif- 
ference   is  considered  permissible   since   the   calculations  were 
carried   out   wt-tn  a   slide; rule.  - The  normal   f orca, , TA  , and   the 
shear   force     R^     can  be   calculated   in a   similar  manner, 
the   calculations  are   based   on  bnr     AS, 

T.   a  u   tt V v. tr':+ V tU '••'•'       ••'"' '•'•• 

*   -0.0513   x   3340  +   0.0785  X   2146   -   0.00193   x   5170 

»  38 .4  pound«-•••<..... .?; , : .,' 

B-^ • u   rt   + ••» ..jr-,4 ..w- jrBj.i   •. .--   -. ...   • , ••-. > .•?.-.!.   •;    ;.•.••;•».• 

• +0.0513; x   2146  - *0.O785-,X- -2340  *'*>-. 00193-:* .ttllO 

• -60.9  pounds 



HA« TN HO. 99B 
- -.. 

•1 ..... ..- i ,,; «•• 

' • '.:.:• ; .j.-ft H .•'••'    • • • 
•; •'•!••   ••:   • '•'• • •  , . . •  ,,. ..-.' .-5  .- !-' ?••"- ; 

When the calculations are carried out for bar AC,' • 

21 

l£V Ö,,0ßX3  x.   29S.S +  0.0785  x   868.5  •  0.0Ö193;V J298; -  38.6 
,;;   ,-a   n»Ji*i*   t.-.'ssy-'   *•*;« " ••..' ':-••        .-I    .».*;T:I 

KA  •  -0.0613  x   268.6••-   0.0785  x   292.5  -0.00193   x   1777  •   -40.1 

T!-e  deviation   of  the   tensile   force   obtained  for   ,AB     froa  that 
obtained   far    AC     la  much less  than  1  percent   of  the  load. . 
The   t<#o   «hear   forces   add  up   to   ~101   pounds. Instead   of  the   cor- 
rect   -ICO .pounds. . . I* • ' .   '•• ' ,'\   , , . 

The  bendln« moment   In  beam    AB     can  be   calculated   froa 
equation   (l).     In  order  to   »-et   consistent   results,   the   follow- 
ing values  are used   In  the  equations: ..... 

H m  234.9   Inch-pounds   T   = 38.5 pounds    RAJJ  =   -60.4 pound«.' 

:'   ""**". ,'.))   '      •.•,•,;*••• HA0  .  -39.6 pounds   ;' 
. .• •: ;'*.,"r/;;r «'•   :-Vii.. . ":• *; .....;;... '.;" 

Snuatinn   (l), becomes - .'. .... 

M•»  38.5 x   10(1 .-  cos q>)  -  60.4"  * Id  «"In (pr* 234.9 

= 619.9 - 38S cos ip - 604 sin ;p '      ' ,1 ',."      ,....•' 

'.' i - * •  "          ^. •.•''{'.   " '  - 

Similarly, the bending moment In beam. AC  is:. ,..•. .*: 
• . ,    .•..!-•       •;-.-• ';..-.,. : i- .-. . 

.- .M - 38.5 x 20(1 -cos <p) - 39.5 x 20' sin.ip + 234;9" 

..'.,•,-1004.9 -'770 cos <p - 792 tin q> ,'.';'•' •  ' 

The bending moment .diagram Is shown In figure 4.  ••' 

CALCULATION 07 THE BUNDING MOMENTS IN RINGS OT AfcBITKARY SHAPE 

Review of Methode, of.Calculation 

When theshape of the median line of the frame deviates 
considerably from a circle or ellipse, or when there are addi- 
tional Internal bracing members Incorporated in the frame, the 
classical analytic methods of calculation can seldom be used. 
The numerical or graphic procedures suggested by Lundqulst and 
Burke (reference 6) and Hoff (reference 7), and the column 

I 
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analogy developed fcy Hardy-Cross »'id' recently described for 
the benefit of aeronautical englneere by du Flautler (refer- 
ence 8) are useful In the.former ease - that is, when the 
moment« have to be determined in a closed ring without Inter- 
nal bracings.  In the publication by Lundquiet and Burke,' 
equation* are also presented for the case of a ring having 
one Internal bracing element.  It la believed.that the pro-- 
cedures described In the, present report will be found reason- 
ably simple, even .when several Internal bracing members are »in- 
corporated in .'a frame of arbitrary shape. • .... 

It will be ehown in the next article how the relaxation 
method can.be .employed to calculate the' bending momenta in an 
"egg shape? frame loaded symmetrically with two equal and op- 
posite forces.  The egg shape In question la the combination 
of two arcs of circle« and two straight lines.  It is believed 
that the median.line of every fuselage frame can be repre- 
sented 'with sufficient accuracy by arcs of circles and straight 
lines. 

is the determination of tba Influence coefficients of 
area of circles la a cumberaome task because of the small dif- 
ferences of large numbers Involved, tables and graph» of In- 
fluence coefficient« have, been prepared and presented for uae 
la part 17 of the present investigation (reference 6).     This 
part IV, entitled Influence Coefficients of Curved Bars for 
Distortions In Their Own Plane, Is intended for use In future 
fraae calculations in ,the same manner aa tables of trigono- 
metric or hyperbolic functions are used. 

It was found that a result of sufficient accuracy can be 
obtained by the relaxation method Sji  a reasonably email number 
of atepe only If the computer can make a good gueas regarding 
the dlatorted shape of the structure.  Unfortunately, it la 
hard to visualise the amount a of rotation the ends of the in- 
dividual elements of the frame undergo.  ?or this reaaon, a 
aecond type of numerical approach la presented.  This uses 
the operations table of the relaxation method as ite starting 
point and reaches the answer to the problem through a number 
of solutions of two or three simultaneous linear equations. 
The procedure is denoted aa the "growing unit" procedure.  It 
la applied to the present problem and givea substantially 'the 
same results as the relaxation method. •:':     •-. !• Ji.,ft' 

For a check of the result's the' problem wa» a-lso solved 
by the graphic procedure of reference 7.  In addition,- the 
system of simultaneone equations represented by the operations" ' 
table waa aolved with the aid of the matrix calculus. This 

*#*&.*iiit«lfaj:;.;- 
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latter approach 1« discussed In the appendix, hut the result» 
of the calculation« are presented 'In this chapter for the pur- 
pose of a conparlson with the results reached by the various 
other method*.  The agreement Is. found to be good. 

finally, the re 
It may he seen from 
elents-calculated- on 
differ considerably 
and the «hearing def 
Into account. In th 
the operations table 
Influence coefficlen 
distribution obtalne 
fled operations tabl 
lated earlier on the- 
table. 

suits of one more comparison 
reference 5 that the influen 
the basis of lnextensional 
from those obtained when the 
ormatlons .of the curved bars 
e last solution of the prese 
was recalculated using the 

ts. It turned out that the 
d through a matrix solution 
e was practically the same a 
basis of the more accurate 

are given, 
ce eoeffi- 
deformatlons ,.. 
extensions , 
are taken 

nt problem 
"lnextensional11 

bending moine.ht 
of this modi-, 
B that caleu- 
operatlons 

In all the problems discussed in this report the cros.s- 
seetlcnal dimensions of the ring are considered small as com-' 
pared to the radius of curvature of the ring.  Consequently, '.' 
the distortions of the ring elecents can be calculated from 
formulas based on the linearity of the stress distribution 
rather than the hyperbolic law valid for curved beams.  Simi- 
larly, In problems Involving shear flow the lever arm of .the 
•hear flow - that is, the distance of the sheet from the neu- 
tral axis of the ring section - Is neglected. 

Basic Data of the Jagg-Shane fling     . * 

The dimensions of the ring are given in figure S.  The 
shape of the median line Is taken from reference 7 and can be 
obtained by drawing the two circles of 20-inch and 25-inch 
radius, respectively, with their centers 25 inches apart, and 
the common tangents to the two circles.  It follows from the . 
geometry of the figure that the angle subtended by are  AB  is 
76.46°, and that subtended by arc  CD  is 101.54°. 

It Is assumed that 
an aluminum alloy I-sect 
of the I-section Is 0.61 
Inertia 0.952 inch"1.  T 
loads depend upon the be 
ltles of Its section.  I 
shearing rigidity has a 
of the Influence eoeffi? 
was, therefore, defined 

the frame 1P manu 
ion to the requir 
0 square inch, it 
e deformations of 
ndinß, extonsiona 
t wat> shown in re 
considerable effe 
lents. 'An "effec 
in such a manner 

featured by bending 
ed shape.  The area 
s maximum moment of 
the ring tinder the 

1, and shearing rlgld- 
ference 5 that the 
ct upon the magnitude 
tlve shear area"  A* 
that the strain 
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energy in shear stored in- an elenent of the beam of an infin- 
itesimal length dl could be calculated fro« the simple for- 
mula ' • 

«üshear - (V*/2^')dI 

where  V  is the «hear force in the section and 2  is Young's 
modulus.  The ratio  A»/A,  where  A  is the actual cross- 
eectional area of the beam, was denoted by  £  and may be 
termed the "shear rigidity factor."  It depends upon the shape 
of the cross section end the value of G/X,     where  G  is the 
shear modulus.  In reference 5, formulas vere developed for 
the calculation of. the. sheer rigidity factor for some repre- 
sentative cross-sectional shapes.. 

In the case of *he I-section shown in figure 5, the velue 
of f     can be calculated from equation (.10) of reference 5. 
The computation gives A* = JA = 0.081 square inch.  It may be 
noted that with the I-section in question the effective shear 
area is almost exactly the area of the web multiplied by the 
ratio O/X. 

In the calculations that follow,  B  is assumed to be 
10.6 x 10s pel.  With this value  31  becomes  107 pound-inchos'3 

The ratio  0/2 was taken as 0.385. 

Calculation of the Influence Coefficients 

Since all computational work was carried out on eight 
bank calculating machines, not more than eight figures were 
kept in the calculations..' -» 

Arc  A3.- The angle subtended by the arc of•circle vas 
denoted  9  in reference 5.  The parameter  ?.  was discussed 
in the preceding article.  In the case of arc  AB. the values 
are: •- . 

I 

! 

I 

, 

3 = 1.3694384 .radians t, .- A»/A » 0,1331058 .. 

The section-length parameter  Y was de-fined in equation (18) 
of reference 5.  In the case of arc AB • 

.. JV. m  Al*/I..«, 480.8619 . 

where     I     is  the! length of the. arc.-    The  parameters      <    and'A 
were  defined  inequation   (19)   of  reference   6.     Substitution. 
yields 
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K = 1 + (ß'/'V) + (ß'/n) = X.0332 

\  » 1 + (pa/V) - (ps/lr|) = 0.9746 

The Influence coefficients ere obtained as ratios of the nu- 
merator and. denominator determinants.  First, the denominator 
is computed from equation (21a) of reference 5: 

A = 0.00521084 ra 

2quatlons (21b) to (21g) of reference 5 yield the numerators: 

I 

fi 
I, 

Ann  •  0.01986728 EIr 

Arn  a  -0.04079644  El 

/stn  =  0.02730762 BI 

Arp  =   0.13958066   (EI/r) 

Atp  «= -0.14320247  (KI/r) 

Att   •  0.19804284   (J5I/r) 

The   Influence   coefficients  are   now  obtained  by division: 

an » ;Ann/A - 3.81268   (Äl/r) 

rn  =.   Arn/A •  -7.82896   (BI/ra) 

tn  *   Atn//1 •  6.24064   (BI/r3) 

rr  »  Arr/A »  26.7866  (SI/r3) 

tr  =  Ätr/A -  -27.4816   (II/r3) 

**  •  Att/A " 38-°°59  (EI/r3) 

(16) 

A unit displacement Is assumed as 10~  Inch, end a unit 
rotation as 10-4 radian. In order to obtain convenient numbers 
in the computations.  Hence the values listed must be multi- 
plied by 1CT* .  With 
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.1, 

•      *   10    P°*"d« per  inch 

»ACA  TK  No.   99a 

**•  «nal   vai„e,. of t 
influence  co,ffleIentB  „„^ 

5 •190-634 in—• p- io- ,.„„ 
'-19.5724 poundsper  10~*  radIao 

I0  '  13-1014  '--  Per   10-  radian 

»  " • »*•«  pound. per   10-,  lnoh 

-3.43520 poundaper  l0'* lnch 

n   = 4-750? »•«««  Per  10-  inch 

fl7) 

are given In equations 
suited to be 0.13305785 
taken consistently In 
clents of any one- Dort 
tance whether exactly 
tlons.  A change In  ' 
alent to a slight varl 
The difference In the 
a change In the erosi- 
ufacturlng tolerances, 
bar are needed: 

-  yor  the 
(25),   re 

*•  Ion 
the calcu 
ion of th 
tfie   same 

from   on 
ation In 
two value 
sectional 

The  fol 

1  "   24.4949   lnche3 

straight   bar   simple   formulas 
ference  6.     Symbol      I    was  as- 

,g as   the   same  value   of     f     Is 
latlon  of  the   Influence   coeffl- 
e   frame,   It   Is   of  little   lmpor- 
value   Is used   for  all   the  por- 
e  portion   to  another  Is   equlv- 
the   cross-sectional   shape, 
s  of     '     given  corresponds  to 
shape  that   Is  well  within  man- 

lowing data   of  the   straight 

Eouatlons   (35)   of reference  5  give 
Y  •   385.14588 

" " -».10»» ,^t,m 10-, 
C •'   •''.'-    •• ••   .. radian tn ... er,.«../-..;.; 

*' «.•«« Pound P„ a0-Maeh'   '•':' 
tr  =   o 

Pound.  per  10_4 lneh 

(18) 
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f   •: a   » V:..|IT- i:     »    ' '  '.   . 

0  - X:7721543  radian» 

£   «  0.13305785 

V -  1259.961 

'K  -   1.031226 

A-. k  0.983760 

The  numerator  and  denominator  determinants  were  CPIculste*   as 
before.     The  Influence  coefficients  have  the   following values: 

nn  = 3.778386   (JSI/r) 

fn••-. -6.911804   (BI/ra } 

tn » 3.279169   (SI/r3) 

rr  - 19.38230  (SI/r3) 

tr'«  -13.89515   (SI/r3) 

tt   =  13,70964-(SI/r3) 

With the values 

SI/r'• i 40 x 10  Inch-pound's 

Bl/r '• 1.6 x 10* pound* 

SI/r  = 0.064 X 10* pounds per Inch 

(19) 

the Influence coefficients become: 
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in  » 151.135  Inch-pounds  per  10       radian* 

rn a -11.05889  pound; per  10-4   radian 

tn  a 5.24667  pounds  per   10-4   radian 

rr  • 1.24047 pounds per   10~*   Inch 

tr   = -0.889E9  pounduper   10~*   Inch 

tt  = 0.8774  pound  per   10~4   Inch 

The   Influence   Coefficiente  at   the  Fixed And 

\    (20) 

In 
to be e 
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balance 
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not it.v 
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vious e 
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In determining the Bign of the forces and moments the 
beam convention shown in figure 6a is used. 

' 
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«.nee   o.;f, larnrc     AT»     *U   • ••»/!    128;.   and   ( PQ ^   «»        J. 
"c    AB     their  Valuei  are: • refer- 

S*f   =   0.33433   (SI/t) "] 

M»J  = -3^56887   (EI/r
a) 

'*ar  =  8.71889   (BI/r3) 

r*J  =  21.5691   (EI/r3) • 

trF = -31.7417   (BI/r3) 

**f  • 34.5276   (BI/r3) 
J Substitution  give» 

(21) 

F.or  the 

.%-   16.7165   i„ch_pound8I)erl0.4radian 

,;;. '«P =  -8.92216 pounds per   10J« radian 

;§:^;'5^-«M«   10- radian 

^F  =   2.39614  pounds   per   X<T4 inch 

•**£•  -3.96771-p0un(3Bper   10-M.neh 

»M> - 4.ai.9BrpoiBdi per 10-^nch 

•^htporMion    BO     there   i.,^^ J 
"".•'• ' .•••„I ' i •, ,., 

•;  i^y^Ä  i-h-poundsp.r'-ao- radian    - 

; .- «y^^W»« pounds  per  X»T* t.41„ V        . " 

.. -   J. •     ' • .    .-i.-v   •. 

(23) 

"?  =  -0.66158  poundcper   10 "* 
.• I , 

•'•   tr„  =: ft, fa. 

*'äy :;?•£?&?*»*? f5j5?5T.»«fi 

inch' 

j • 

.)'    "(23-') 
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For are .CO the Influence coefficient» for the fixed 
end will not be needed lathe relaxation procedure. However, 
It Is convenient to have then for checking purposes: 

>      (34) 

n3p • 37.649 Inch pounds per 10~     radian 

rn? • -7.3584 "poundsper. 10      radian 
•^ —4 
tnp = 9.7861 pounds per .10  radian 

fry • 1.119416 pounds per 10~ inch 

try • -1.03755 pounds per 10~4 inch 

tty « 0.695839 pound per 10~* inch 

Operations Table 

In the operations table the forces and.moment a caused 
by the Individual operations are listed. An individual oper- 
ation consists of a displacement, or rotation, of one point 
of the frame while all the other end polntB of the individual 
arcs considered are held' rigidly fixed. The operations table 
can be easily established once the influence coefficients are 
kn own. ' ~ .. • 

Care must be exercised in t 
convention Is not suitable for u 
since according to it the signs 
whether  T  and W  act at the r 
the arc. Tor  this reason, the r 
in figure 6b will be tised.' In t 
rents are positive at either end 
tangential force Is positive if 
proceeding In a clockwlse' sense 
force Is positive when It acts t 
Moreover, the operations table i 
effect of each operation upon th 
the beam.  In other words,the ta 
upon the imaginary supports (or 
points Is displaced;..-.    J 

he matter of signs.'' The beam 
se in the operations table, 
of T  and  W  depend upon 
lght end or the left end of 
lgld frane convention shown 
his convention clockwise mo- 
of the arc.  Similarly, a 

its direction corresponds to 
along the arc. The radial 
oward the center of curvature, 
s set up by considering the 
e constraint rather than upen 
ble lists the forces exerted 
constraints) when one of the 

In the particular problem at hand, points A and D 
will certainly remain in the plane of symmetry when the dis- 
tortions of the frame are caused by the symmetric loading 
shown in figure 5.  It follows further from the symmetry 
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. *baa*taa. horizontal-tangent» at»?A and: » : will.'.remain hori- 
tontal.  On the ether hand, the distance between A  and  D 
will >«n«hge and*T"tha lbadiag.  It' suffices', therefore, for 
describing'all ponsitle relative displacements to consider 
the team as rigidly fixed'at • D  and to allow section A  a 
single degree" of frebdom of.motion: namely, that of a verti- 
cal displacement.  (See* for'instance, reference 9.) 

.. ..• ? i)T        i *   i • . .      * 

InUUi first row of.the operations table (table 6) the 
effect «Je« radial displacementtof point  A  is listed.  From 
equations (17) the radial force' acting'unon beam AB iii sec- 
tionVA.ls": 3.34833 pounds when section A is displaced the unit 
dl*t*nce-f<10"'S in.) in the positive radial direction.  06n«e-> 

~|al»ntly, .«he -reaction of this force; that is, -3.34833 pound« 
will De,">eCertid?upon the constraint at  A.  The effect • of the 
-•aaea«idt*oft-'u»o«J«he fixed end of the'beam at section's Is'".' 
****n '»^"'the-iüflüence coefficient«1 for the fixed end .cöiU*-•*•' 
talned in equations (22). IheEe Influence coefficiente!«uet- 
again be multi-nlied by -1 in order to obtain the effect of 

•'the disolfcement UDO» the constraint.  The final values are: 
•:.-• '•:-. >•• '".*.   t.-i    ••'•.'. -i" r.l   . I 

:Hj.«X8.928IB::in«)i-pdu;nd'8 /HB = -2.69614 pounds Ij =-3.96771 pounds 

With these forces the chance from the beau! 'convent \' $n"->iae 4* 
fot* the'fSfiueffce cö'Sf ff liient s to the rigid frame convention 
used in the operations table did not entail .any. qhange.s in . 
sign, as may be seen from a eqmtmriBo'n of figures'Be. [and w^b:. 
It may be noted that a positive radial deflect iön öf''tlve''beam 
at point  A  caused.a negative radial force "to a'dt .u.pdff' the 
constraint at A. 3ffa'i • could be expected, since''an'ipwafd 
force is felt if the movable end of the, elastic cantilever, 
beam shown in figure 6a is pushed tfow'n'.; 

The eec'ond row of thre opera't'i on;s t'sole shows the effect 
of a rotation of the section at  3. ,If end section B of beam 

necessary to balance  NA  and  TA.  Because of the symmetry of 
structure and loading, the point symmetrically situated to  B 
would always be displaced in the same manhpr; as ,' B  is, and 
its displacement would cause a tensile force and e moment 
which would balance  NA  and  TA.  (See also reference 9.) 
The effect of the rotation of section 3 of beam  BC  upon the 
fixed end at  0  1B represented by the influence coefficients 
of equations (23).  Of course, all these coefficients are 
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multiplied by -1 before entering than In the operations table. 

fhe effect of a rotation oY iectlo« 6 upon the forces 
and the moment at  B  is given by combinations of "the Influ- 
ence coefficients far the movable- end of beau* AB and 30. 
It must not. be forgotten, however, that In' the; 'calculat1 on• 
the rigid frame' convention must be used in determining the 
correct 'sign of the influence coefficients.• According to fig- 
urea 6a and 6b at the right end of the beam AB the two sign 
conventions are identical, but at the left end of beam BC 

..: only the signs'of the radial force are- the-' 'same, th»se'of the 
~'t*ngentisvl force and the'moment are opposed.  (Cf. fig. 7.) 
Displacements and rotations are considered to have the sane' 
positive sense äs the corresponding forces- and moment, reep:ec- 

•tlrelyi. - If. the multiplication by -1 is alB'o carried, out in 
i. order tx>  obtain the- forces and the moment acting upon the con- 
straint, the entire calculation can be given in the'following 
line si 

B 

137.232 

1« Influence coefficient   for 
beam    AB 

9.  Influence   coefficient  for 
beam    BC :•..-..•<• 

3. Bow (2) multiplied by -1 to ob- 
tain coefficients corresponding 
to positive rotation according 
to rigid.frame convention    •• . 

4. Signs of preceding line changed 
to conform with rigid frame con- 
vention for force and moment 

,»j Tjtua ..or" rows (l) and (.4) 
'   j '   j ;• '        • •  • ;•:—•..• ..-•.•• 

£. Sow  (-6)   multiplied  by. -1  to  give 
r...effect  upon constraint.,: -327.866 

190.634     -19.5724 

B 

13.1014 

•6.10267 

137.233 •:8.10287> 0 : * 

137.232 8.10367 0 

i 

i 
327.866 '-11.4697 "• 13.1014 1 

11.4697;:; -13.1014 

Bine*  the   calculation  of .the,   other -iterns  in the  optrratione 
table is carried  out   according to the «ana principles,   further 
details are not  given.    ••'.•- : •«••• 
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Solution of the Problaa by Relaxation 

I 

I) 
.'I , 

Th« purpose of th« relaxation« It to find such multipli- 
ers for operation« 1  to 7 a* result In B^ • 500 pounds 
and In vanishing values for all the forces and moments N$ 
to Tg.  The value of 600 pounds Is stated Instead of 1000 
pounds, since because of the symmetry only one-half of the 
structure Is considered. There Is no need for balancing the 
forces and moments HA, T4, HD>  and TD,  since they are au- 
tomatically balanced when the left-hand half of the ring under- 
goes distortions symmetric to those undertaken with the right- 
hand half.  Moreover, because of the conditions of equilibrium 
of the external forces, a residual force ED » 500 must be 
obtained automatically at point  0 when all the other resid- 
uals are brought down to negligibly small quantities.  This 
force Is then balanced by one-half of the ICOO-pound external 
fore*-at' D.    . 

In working o.ut the present problem It was thought advan- 
tageous to begin''with a rough guess a* to the final shape of 
distortions of the frame.  It was convenient to consider sec- 
tion D as rigidly fixed and to assume reasonable amounts of 
radial and tangential displacements for each of points A, B, 
and C.  The- amounts chosen are given below together with the 
forces and moments caused by their simultaneous occurrence. 
As may be seen, the radial and tangential displacements listed 
correspond to displacements of points 3 and C upward and 
to the left, and to an upward displacement of point A.  The 
rotation of B was assumed to be clockwise, that of C 
counterclockwise. The forces and moments were, obtained by 
adding up corresponding values of the operations table after 
the rows were multiplied by the factors chosen.  The distor- 
tions are; 

•. • -100 units 2 units  va s SO units uB • -30 units 

w„  •  -0.5 units =  50 units     U/,   a> -31  units 

The  forces and moments resulting from the distortions are: 

H» »3 H B lB a«. 
9».839       -145.67       26.133 -134.9 -368.*.       -16.77       11.67 
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The   rot   of  distortions  listed   can  be   considered  ae 
"group dl «placement ."     It  Will   be  denoted  ae 5jpera:tlon 
Irr the  cour se   of the   relazntioii8.lt   1B advantageous  to 
use  of  other  combinations, of  the  elementary  O'pe rat ions. 
such  combinations  were  used   In   the  relaxation   t;ible   (ta 
They are  listed  below.' '   vui<l,-        »w 

a 

[•]. 
sake 

Two 
ble   7).. 

I. ft. :i. h. 
Operation  [9]     „• 

<• k    •     •  "B "B *B "0 "0 
-100(uB+uc)     -396:771   13.10.14   -343.58  475.88   584.667-88.9 

Operation   [10]        .    '   ' 

[9]  -   180  vA 5.03       839.5       -19.98 

0« 
89   8-*:75 

• >• v. y": 

-I if- •• 
•0.85  584.667   88;989   87.75 

In   operation [Tij the   shape   and   t 
beam  (beam    BC)   do  not', «hange.     Oper 

I I denoted  ae  "block dlsplacenentl."     I 
, part   cf  the   structure undergoes  a rl 
• i 

I 

he ' lengt*r 0:f • the   straight 
at'lon'e-'of  this'-kind   are 
n'k bl'ock displacement 
gld  body displacement.   . 

,•.- T*bl* .7,.-  First  Heia 
*••:••••'}    •           j 

ration  Table             .-*     ...... 

Operation  1 
.        HA .^••" ..» . •Ho.ll 

:    «ti      •. 
.   T 

0.3 [ 9']» 
98.339 

-119.03 
' -14.4.137   • 

S9s7o*: 1 
• fcG.132 

-los.oe 
-134.9 
142.58 

-sea'Ä [ 
15?, 4," 

-16.77 
26.63 

11.57 
'2C.33 

-25 [3] 
•' -20. IS 

67.40 
24'/.37 " 

-266.74 .' 
-7G.i>3' 
100.26 

'7.68 
-85.88 

..••. ....,_•• 

-211."2 
202.6 

9.91 
•-1G.64 

. 37.90 
• 0 

-2 [*]'•• 
..   .47.21 
.    -7.94 

-SSjcW 
26l 20 

23.32 
-6.87 

-73.20 
j, 61.DO 

• -Q.-6 " 

.. -Of-.r 
.   -!6.63 
• . ..'0.' . 

37.90 
-52.41 

0.1  [10] 
•• 39.27.V, 

0.50 
•   -13.17 

23.95 
ie.d7 
-2.00 

-16.29 
-0.09 

•' "-8-.5- ' 
j  6S.E"-'' 

-6.63' 
'   i'8.89 

—14.51 
3.72 

0.15   [5] 
39. ,?7 
0 

.. 10.7a 
-9.13   r 

14.45 
-1.22   'i 

-1G.33 
-•:•    0   «    : 

43.9 
v  -45>3.; 

2.2G 
-0.44 

-5.79 
-0.79 

5   [1] 
59.77 

-16.74 
1.59 

44.6'   " 
13.23 

-13.48";. . 
-10.33 

.:    19.64. 
O.G 1.82 -0.58 

0.14   [2]~ 
23.03 

1 -l.'i25 
4C.2 

-4Ü.9 
0.25 

•':•    1.61 
3.43 

.„..-1.83 
0.3 

-8.57 
1.32 
1.13 

-6.58 
0 

1' 

-0.023 [5] 
24.20 0.3 

1.71 
1.36 
0.23 

1.63 -CO 
n..i O.OT 

-6.58 
0.15 

-0.15 [7] 
^'84.88 2.Q 

° 
2.1 

° 
- :  rl»6? 

-3.93 
0.1 
0.5- • 

3.03 
O.'Ofi. . 

-6.43 
0   4.06 

24.28 2.0 2.1 -2.3 
L.    .   

0.6 3.1 -2.37 

I 
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Instead of balancing the largest residual foree at each 
•tage, It was found »ore convenient to adopt a particular pro- 
cedure.  After operation [8] wae completed, an attempt was 
•ad« to reduce all the reelduals but BA to negligibly snail 
quantities, while keeping fix ' »• large as possible. The pur- 
pose was to establish a distorted shape corresponding to any 
finite radial force at A and negligibly small residuals at 
points B and 0.  Division of 600 pounds by the radial force 
at A  so obtained yields the factor by which the complete set 
of operations undertaken must be multiplied In order to obtain 
the final displacements of the frame under the load specified. 

Table 8.- Check Table 

Operation h r HB r KB T Nc_J RC TC 

-107 vA 368.271 -954.671 288.467 -424.545 

3.UwB 19.093 -701.633 2-1.545 -20.037 -131.058 17.340 0 

26 vB -67.404 286.742 -100.246 65.C30 -202.567 16.540 0 

-72 uB -285.676 943.301 -247.334 2228.87f> ' 0 0 -1886.818 

-0.578 wc 23.149 Ü.063 0 109.003 1.117 1.983 

50 rc 405.134 33.079 0 -147.811 -9S.103 -44.465 

-71.16 u„ 0 0 -in6U.5i»3 373.301 63.273 1926.977 

Sum 24.286 2.022 1.592 -2,369 0.368 3.137 -2.322 

In table 7 the objective was attained to an accuracy of 
13 percent In nine operations following operation'[8].  Before 
the relaxation was continued, a check table (table 8) was then 
established.  Some slight differences were found In the re- 
sults, and the residuals of the check tible were further re- 
lazed In 11 more operations (In table 9). 
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Table 9.- Second Relaxation Table 

Operättoa! 

Results of 
Cho'eK TnKLe 
2 [63,      • 

-o45C7] 

i.>*[i] 

0.091+ [2] 

?A 

2i+:2SS 

24.236 

»B 

2.022 
I6.2O5 

13.227 
0 

24.236 
-4.633 

19.598 
0.837 

13.227 
12.1*91 

% 

1-592 
1-323. 

2.915 
0 

2.915 
-3-775 

30.71s 
-30.219 

-O.SoO 
I.07S 

rP.03^7 [53   i 
20.it.35 1   -0.101 

!    2.125 

.0.025 O] 
20.1+35 
-0.099 

0.21s 
0.231 

2.024 
0.323 

I    0.499 
I -0.C36 

0.2 [1] ! 
20.335 
-O.669 

0.0126 [2] 
19.667 
0.112 

2.352 
I.70U 

;  o.iti3 
j -0.539 

*B 

-2.369 
0 

-2.369 
-3.931 

0.363' 
-5.912. 

-5.044 
+0./87 

-6.3OO 
5.555 

-U.257 

-0.71*5 
-1.231 

-4.257 
-5-757 

-I.975 
0 

-10.01U 
10.006 

He 

3.I67 
-3.304 

-O.637 
0.133 

-O.50I+ 

-O.5O4 
O.762 

0.253 
0.103 

-1.202 
0.793 

-O.00S   !    0.351 

1+.136 
-I+.136 

j -0.126 
i    O.lV-V 

j -0.1+09 
i -0.165 

-0.003 
-0.77 

-O.OO27 [5]   j 
19-779 

0.1 [1] 
19.779 
-O.335 

0.002 [2] 
19.1+1+1+ 
0.017 

Results of 
ä. secoaä 
chock 

19. Wl 

.1M71 

C 
+O.I65 

0.C13 
+0.022 

! -0.574 
!   0 

-0,77s 
+0.779 

0.361 
0.102 

%• 

-2.32.2 
-1.779 

-1+.101 
1+.062 

-O.O39 

-0.039 

-0.039 
+0.182 

-1.976 ! -o.oos i  0.361     0.11+3. 
0.77!+   i     0 ;    0 -O.655 

-0.512 • 

-O.5IC 
0 

0.165 0.040 
0.S92     j .-O.27O 

i -0.574 
j    0.397 

I.C57 
-O.656 

-O.230 
O.023 

0-4C1 

•3SC 

-0.2C7 

.195 

-0.177 
-0.026 

-0.203 

-0.266 

0.001 

0.1*63 
+0.003 

0.1+71 

-0.512 
0.011+ 

3.1+98 

0.001 
-C.1'22 

1   0.1+71 
o.ci'6 

-0.121 

-0.124 

0.1+37 

0.1+Ü7 

-0.1+93 

-0.1+9C 

-0.1+1+5 

After those the greatest residual force at uolnta B and 0 
was 2.6 percent of the radial force obtained at point A. A 
second check, details of which .ire not given in this report, 
resulted. In the residuals listed in the last row of table 9. 
Since  the radial  force  at  point    A    had  the  value 
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B4 • 19.471  pounds 
. .    '•"::'  •'•   • *rtft,.^? ,  „... ,„       .,  

': •*•     -• • '   '  '.-:  ,; •   ••    ,   .. » ' . , •'   • '    •'•' ' •' 

•11 the  operations had to be mul.tiulled by' ihe factor  .-••• 

••r        500/19.471. -  25.679 ' 
»* . . • •   . '•'••• •*'•.' 

1B order to obtain the final deflected shape of the frame. 
The final deflections are given below: 

•*..- -0.3704 Inch  wB 3 0.005774 radian   v3 • 0.06420 -inch| 

*B - -0.18495 Inch  vo •' -0.0010667 radian VQ • 0.13363 tneb^SS! 

uO '• -0.18309 inch 

It "may be seen that 
shape, aä given in öperat 
the final shape. Neverth 
ber of•relaxations was re 
Ism. The deflected shape 
bending moment dletrlbutl 
the tangential force and 
needed. These are caused 
of points A and B, and 
tbs influence coefficient 
The calculation follows: 

Caused by: vA»10~
4  vA»-0.2704  wB=10""*  wB»0.005774  TB«»10" 

the first guess for the 
ion [6], differed consl 
eless, only a comparati 
quired for the solution 
is shown in figure 8. 

on is calculated.  ?or 
the bending mor.ant at p 
by the displacements ( 
can be calculated with 

s given In equations (1 

defleeted 
dsrably from 
vely small num- 
of the prob- 
Next, the 
this purpose, 
olnt A are 
and rotations) 
the aid of 

7) and (23). 

!     ' 

-19.P734     63934 

-3.4353    9388.78 

16.7165   965       -6.93216 

31.7972  1358.57     -3.96771 

Caused by: VB*G.Ö6420 UJBIO
-1
 U3»-0.18495    Sum 

»A 
•* 

*A 

-5728  ,,   21.7973   -40314 

-3547.37    .4.31595' -7982.35 

7847 inch-pounds 

17.73 pounds 

Since influence coefficients were used In the calculation 
of the moment And the tensile force at  A,  the values ob- 
tained represent the action upon the curved beam, and the 
signs are in accordance with the beam convention.  It must be 
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noted, however, that the signs, of the dlsplaeemente used In 
tha nreeedlng calculation» also had to be taken according to 
the beam convention.  In the present case« this requirement 
did not cause any change In the signs of tha displacements 
Obtained from the relaxations) since the displacements and 
the rotation at the right end of the curved beam, and the ra- 
dial displacement at the left end have the same sign for the 
two conventions. 

h 

11 

i/lth the value 
SA. • -500 pounds, t 
eral points along t 
.distribution Is sho 
radial force, and t 
calculated from the 
•a check of the accu 
taken to transfer 
to Conform with-the 

s of HA  
and  TA  so obtained, and with 

ha bending moments were calculated for sev- 
he median lino of the ring.  The moment 
wn In figure 9.  The bending moment, the 
he tangential force at point  0 ' were also 
Influence coefficients In order to obtain 

racy of the calculations.  Care must be 
the signs of the displacements at point  C 
beam convention. The computations follow! 

„-*« Os)u»ed  by:   w0  *  10 wc • *  0.0010667    vc  »  10 V0  =  0.13352 

%.'"•• 
37.649 402 -7.3524 -9818 

*B '• -7. 3524 -78 1.119416 • 1495 

H ;   9.7861 104.39   : ,.1.03755 , .-1385.44 

CfcuMd by: uo -  10""* U(J   • 0 .1.8309 Sum 

•* tf.: 

9.78.61 

,-1.037,56 . 

0.695839 

17917 

-1900 

1274.01 

9501  Inch-pounds 

-483 pounds 

-7.04 pounds 

These.values  show that  the accuracy Is   sufficient   for en- 
gineering Tjurnoses.     The  radial   force  obtained -deviates  about 
3.4 percent.from  the  actual  -500 pounds.  The  bending moment   is 
shown as  9088  Inch-pounds  in  figure  9.   'The--deviation  of the 
average  of the two values  from any  one  of the  values  given  is 
3.3 percent.     The  forces    Tu     and     TA     should  add uo  to   zero. 
In reality,   their   sum is  10.69  sounds,   which  Is  about  2.1  per- 
cent   of 500 pounds - "that  is,   of  one-half the  applied  load. 

•*2SW»J * 

"•:^:,*i-- 
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The Or owing-Unit Procedure 

In the growing uniti'procedure the unite e^the ring «re 
combined gradually Into unite of increasing elie until finally 
tfa« entire ring become B a single j-.ualt .  In each etep of the 
procedure two'or three simultaneous linear equations have to 
he solved.  The growing unit -procedure has been developed, 
•lace in many problems the relaxation procedure is too slowly 
oonvergent.  This is true particularly when the shape or the 
loading of the frame does not allow a good guess regarding 
the shape of distortions. . . 

Vhenthis,procedure is applied to the.,egg-shape frame 
loaded.by the equal and opposite forces at  A  and -D  in fig- 
ure '6 ...it can again be assumed* -that section 0 is fixed in the 
plan,?,,, a,o.d .section A is only 'fr^ee -to' move in a vertical direc- 

1 tlon. The first» -s-tep in the procedure is, then to combine 
beams AB .'and -EC  into one unit  AC. ' This can be accom- 
plished by determining uj», • VB,  and WB <SO asr to cause HB, 

- HJJ,  and  TB  to van.1 sh when In turn'a unit radial displace- 
ment, a unit- tangential displacement, and a unit rotation are 
undertaken Individually at points A and C. 

i In..the present problem section A moves only radially. 
The forces and the moment acting at .B  when : vA • 10~* Inch 

,.are given i in fche-'Sdeo-nd, third, and fourth columns of the 
'first row of the operations table (table 6.). 'The .'forces and 
the moment caused by 'the unknown displacements and rotation 
at  B  can be obtained from the second, third, and fourth rows 
of the operations .tables  The requirements of .thjs, vanishing of 

: the forces'and the moment' at - B ' can then be written in the 
>ybrms 

-327.866:1WB; + .11.4697 vB - 13.1014 uB"« -8.92216 

11.4697 wB„~.4:00991 vB + 3.4333 uB* 3.69614 \(26) 

-13.1014 WB + 3.4352 vB - 30.9566 uB '» -3.96771 

Solution of the. equatl-onrs gives; 

wB • 0.003449389 x'lO  radian 

vB = -0.612145 x 10 inch 

uB • 0.05878271 x 10   inch 



"\ 

*Ö HAOA XH HO. 998 

I 
The displacements #t>ttnd-..gl*e: rise .tof-orc«*" and a moment at 
0, whioh ean be ealeulatad from the values In the second, 
tklt d% ;»md:,f»tt,rth.-. r.6»e «ad «he'last three eoluams -of'the oper- 

• at lone table: ..i* a-.».- - -.•.-•..' ":. .••?. • : .'«* if.'- 

• »•- •••4i748767 lnehfpounds- 

Ee   •   -O.2770343;po»nd 
...     •      •    •       • >  

Se  m  1.540448  pounds 

(27) 

I 

In order to be able to balance out the forces and the 
moment at  0' :äs Riven in equations (27) ."section C must be 
displaced and rotated. lng these motion»; however, no un- 
balances mttat appear in seötfön B. In the ;nextr «tjp of'the; 
calculations, therefore, section 6 wi.1V be . in turn rotated, 
displaced'radially, and displaced tangentially, and in each 
eaae values of''wj,  vB,  uB will'be calculated so as to . 
cause     H?, .H B> .and . T B to vanish,     When   section_C   1«.ro- 
tated through a positive,angle  of 10~    radian,   the  operations 
table  gives: .-•.< ' 

-3i7;886'WB:+,il.46^:v|:-.13;ioi4 uB •  6i.;8^. 

11.4697 wB  -'4.00991  vB+  3:4353 UB  »8.10267* 

'    -13.1014 wj * 3.4352 vB  -  30.9666 u^  ••0 

(28) 

"It may he seen. t.ha,t the .left-hand side terms of equations (28) 
are identical with those of equations (26).  Solution' of equa. 
tlons (28) yields 

wj • -0.28372447 * 10   radian' 

vB - -3.0160675 x 1Ö~* inch 

uB • -0.2146168 x 10~* inch 

(29) 

:1: 
These displacements cause forces and a moment to appear in 
section 0. Their values may be calculated with the aid of the 
operations table as before: . •'•>  • 
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*•>j-.i* 41.014=066 -inch-pound* 

Be •••* i-4.29430 pounds' • •' 

*c  •  -5.624205 pounds ••" 

(30) 

la addition, 'force«  and  a  moment  are   caused  at     Ö' ' by the unit 
rotation of    0    Itself (while  seetlona B and D are held  fixed). 
These  quantities  may  be   taken,.directly  from  the   operation! 
tables 

SQ   •  -388.367   inch-pounds 

He   <J  -2.96622" pounds 

Tc  • -5.24667  pounds  •, • 

Consequently, a unit rotation at 0, together with th-e nn>*:. j 
tiona at B required for HB, HB, TB to vanish, gives rise 
to the   following  forces, and  mpraent   at     0; 

H„  a  -246.55294  Inch-pounds 

He  =  -7.25052 pounds 

•ft  =«•-1.0.870875  pounds 

(31) 

•!hl!L- 

The effect of a unit radial and'a tangential displacement 
of 0,  respectively, upon the forces and the moment at  C 
can be calculated in an analogous manner.' 'Again, the left- 
hand sl*e members of the equations are identical with those 
of equations (26) and (28).  The right-hand-side members have 
the values 

-6\iÖ267, -Ö.66158, and 0 

when,; C   ..undergoes  a, unit   radial   displacement,   and        •-»   T.-.'.C. 

0,   0,   and  -26.2058 

when  C  undergoes a unit tangential "displacement .  Solution 
of the equations gives 
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.«*•••  0,03369878 »,107« r.«M 

*"' UB -   0.2753198  X  l0"4   Uch 

,»B  •  0.01639283  x   10-*.iBch. 
(33) 

"B - '-0.'01039843 

*B • Q.7.736881 .x 

TB  •   0.9366781. x   ;.0"4 
(33) 

*  ICT* radl«a    ] 

.   .inch I 

••nt 

(34) 

136.) 

»e  "'-'4.3943Ö  iüeh-pounds • 

T
e   • .0.43696.7  pound 

!XS) *c   -   0.4651558. pound I 

*«•"»    0    undergo.« ft unit-radial«     u 
radial  displaeeaent,   and 

l,:-V."'.'!"    : '*°  "  -r5-6?42°5  inch.pounds       V     ... 

;•';•'-' 8C  -  0.43696? pound,; /->•--:' 

-0   "  24.5464 pou-nd„    ,: I •'•.••••     , • •> 

"he   effect   n*  .L ••,••'..:.••.. 
»oment   at     c "5 the   "otion   of     0    nn»,   »w 

.,-.    ..*0   •  T8.S5633  i0ch-pound,s 

B0   -  -1.90205 pounds . • '< 

TC  -  -0.88939 pound 
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whan    0    undergoes a unit  radial dl«placement,   and 

43 

Ig  • -5.34667 Inch-pound« 'if: •/? 

T0 

-0.88929  pound 

-27.0833  pouridB 

whan    0    undergoes a unit  tangential   di«placement. 

Altogether." fhe  force« and  moment« at     0     become,   whan 
0    l»'Xl<pl»ced radially and; tangentlally,  respectively, 
through^'a: jafos'ltlve unit  distance: :   '•';' 

-7.250S3 inch-pounde 

{SB). 

In the  ea«e  o 

(37) 

-1.4469942 pound« 
'•    ».'     .-.     „.. . . 

T0   »  -0.-462383-.. pwind . , 

*'"*.• -     • <     -, 

f V V*dla~l 'displace «lent,' and ? , , 

...   Hg  -,-10.870875  Inch-pound« 

<"• : H0  •  -0.462323 pound^'.,,        *' 

T0  »  -2. S3 69  pound *     "' ': 

IsijJW'"•'»••  °* * tangential dl «placement. 

Aquation«   (31),   (36).   and   (37)   give  the  forces  and  the 
moment   caused  In   section  C  by  the  three  possible  motion«   of 
section  C.     These value«  correspond  to  such  distortion«   of 
the--ring'as. do  not  entail  unbalanced • forces  or  moments any- 
where  along the  ring  except   In  the. end  section« A and    0. 
The values   of the motions at     G     must   now  be  determined. In 
such  manner  as to balance, out   the  forces  and  the  moment   caused 
at-;. A     by  the unit   r&dial   dl splaceme'utf of    A.     These unbal- 
anced   force«  are  listed   In squat 1 one .(37).     The   requirement« 
that     NQ,     HQ,     and     Tg     must  vanish  can  be   stated  in  the   form 
of the   following  three   simultaneous   equations: 

', ,   -246;55294  w0  -   7.2505?.. vc  -   10.870875 uc   =  -4.748767 

-7.25052 wc  -  1.44.68942 vc  -0.462323 uc  « +0.3770343^.(38) 

-10.870875 w0   -  0.462323  vc  -   2.5369  uc  =  -1.540448 
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•«tMtflronr«  li 

'O  "  0'.00S84-9'8'91   x   io~* radian 

T0 m  -0.4976019 x 10~* inch 

uc • 0.8814033 x lö~*   Inch 

(39) 

The«« are the actual motion« of section C when  A  la 
displaced radially through a poslMr« unit distance, and when 
the notions of  3  are such as to result in vanishing forces 
and moment at  B.  The total 'motIons of  3  can be obtained 
by adding up the values corresponding to the following four Item«: 

1. Motions of  B  when  A  is displaced radially; given 
by the solution of equations (36) 

3. Kotions of  B  when  C  Is rotated; these are the wi.en  ü  Is rotated; these ore the 
values listed In equations (39) milt lolled by the 
factor 0.003349891 taken from equations (39) 

ions of  B  when  C  Is displaced radially; these 
are the values listed In equations (33) multiplied 
by the factor -0.4976019 taken from equations (39); and and 

Motions of 
the 

B  when 
these ere t he 7o] u-e% JiJW*"« t»n«ent ially, 

"•"^•^^-t^/^I^f^J-a.ions.   radiax   di.pl,e._ 
««...,.   respectively,   yi^a,! 

»B   -  -0.0314344  X" 10~*   radian 

vB   »   -0.334345  x   10~4   inch 

uB   =  0.6391035  x   10"*   Inch 
(40) 

'«««.P.M. u.on %?.&*£: ;}*&•; «i-. 
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and B. '-   According tothe first entry in the operation» table 
(table 6) the radial force at A  caused by a~unlt radial 
displacement of A la, provided B  la held fixed, 

H.  » -3.34833 pounds 

If now A  is fixed in ite displaced position and B  is 
•oved into the position indicated by equations (40), the ra- 
dial force at A caused by these motions can be calculated 
from the entries In the first column of the operations table 
(table 6): 

SAB m  .0.0214944 X 8.92216 + 0.234246 X 2.69614 

+ 0.688103S x 3.96771 »3.169978 pounds 

:i; 
The total radial force at A is the sum of tHe preceding two 
forces; 

SA " RAA + KAB * -0.178352 pound (41) 

In order to balance out the 500-pound external force carried 
by one-half of the ring, all the distortions of the ring and 
fores  HA  in equation (41) aunt be multiplied by the factor 

f a -500/0.178352 - -2803.4448 (42) 

Multiplication of the values given in equations (40) and 
(39) yields the final displacements and rotations: 

wB "   0.006025836 radian 

uB - -0.19290602 Inch 

vc M 0.1395000 inch 

v2 a 0.06666929-3 inch 

wc m  -0,,001079296 radian 

uc - -0.191027345 inch 

(43) 

At  the   same  time  the  radial  displacement   of point     A     is 
naturally 

vA • -0.28034448  Inch 

With   these   final   values  of .the  displaceraantq mod: rota- 
tions  the   forces and  morents  at. points    A    and    D    caninej. 
calculated  from the  influence  coefficients. 
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*»•## ««ladlaHonf yere carried out   In  the   «am« manner 
flf ft!«MI  1«  rftfäätfäffoül >£th the   eolation   by relaxations.     The t*$*lt* are 

».   •  7970.2 Inch-pounds 

?A   a  13.24 pound* 

...   f_   *  8868  lneh-vounds 

H_ ,a  -.499.8  pounds 

V  "  -12.82 pounds 

*«la»«hbv""e?rao'r o' the«« 

D     1«  prset,».,, °.' about   o .*  _ '   "r" 
'•" "o- v: 8e6

h; r9-uiti -.."/.2.1-,"4 •• •»• i.-., 

*u BUn    Of       5' >i"»i    tO    ono    H„Ti, •        'fit 

'•••-*•« tu. W1;; £;•"-*• * i.B1 

°ti,er   »olutlon.   of  th.  „ 
.tio  th«*robleiD 

VA   +   8.92216   *n        0  . 
8-922l6   v4        , 96U   VB   *  3.96771   , VA-3—^  +  11.4697VB       u -»3-C0J 

VB   -   13.J014   u3 ( 

-   Sl.24'2   w ,'(44) 

e the  •Sff.th.p.  nnTiaipl*Ine<».     TheT  •Wtion, 

I 
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and opposite forest war« also solved Dy the matrix calculus. 
The results obtained.art at follows! 

"B 

-0.280349 Inch 

0.0656 70Ü5 inch 

0.139503 Inch 

-0.193910;lneh,., 

wB - 0.00602607 radian 

tf0 - -0.00107944 radian 

tt„ - -0.191031 inch 
(45) 

It  may he  seen  that   these re suits are practically the' 
same as those  given  in -equations  (43).     it  follows from this 
agreement   of the displacement* that  the  bending moments,   the 
axial   forces,   and  shear, forces must  also agree.     The three 
most  Interesting values are  given belov: 

N^  *  7970.8 inch-pounds 

?A  *  12.57 pounds 

Ng •; 8.844  inch-pounds 

(46)' 

t      The solutions by relaxation, the procedure of the grow- 
ing* utfit, and the matrix calculus were all based on "the oper- 
ations'table.  An independent check was'obtained by solving 
the problem by the.sefii-graphie procedure described in ref- 
erence 7. 

In this procedure four imaginary pins were inserted In' 
the ring, and the bending moments at the four pins were eon-* 
sldered as the statically indeterminate quantities. The 
unknowns were combined into suitable symmetric and antisym- 
metric groups, and their magnitudes were, calculated with the 
aid of the minimum strain energy principle.  Details af the 
calculations are not' given here, only the values obtained for 
^Ai ^A>  an* ^D are quoted: 

"A " 78*° inch-pounds TA «8.86 pounds Sj, • 8460 inch-pounds (47l 

The deviation of the value of KA  in equations (47) from that 
In equations (46) is about 1.6 nercent; with NJQ the devia- 
tion Is about 4.3 percentv :  "f."; .. 
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It may be seen that operations table 10 differs gre.atly 
from operations table 6.  nevertheless, the matrix solution 
of the system of Iir.ear equetions costpri sing the operations 
table was found to be very similar to that given earlier in 
equations (45).  The cresont solution is as follows: 

-0.26185 inch ' 

:0.062543..iri'd>. '?',/.; 

•0.00001'890'radläö' 

w_ =0,0058334 radian |! 

- tf0'• -0.17491 ineh)(48) 

0.13340 inch 
J ... t   . 

"3.." 

I 
1 

I 

The moments and forces were again calculated as before. 
Some Indicative values arenas follows: 

'r' > n . "A *. .789B.9 inch-pounds 

TA = 13.134 pounds 

NJJ = 8919.3 inch-pounds 

(49)' 
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Th« difference  between  Corresponding values  In  equattiona   (49) 
and  (46)   la about^0.9 percent  In tha case  of    H^,     and about< 
0.3 percent   In tfhe  case  of    ND.    A comparison  of all,  tha.  fI've ' 
solutions  of the,.problem  Is given below: 

Relaxation Growing unit   Matrix Graphic      Second matrix 
(lnextenslpnal deformations) 

HA(ln.-lb)-. :' 7«U7 7970.2 7970.2 7gijo   ' 7898.9    . 

TA(lb)    ... .     i-7-73 13.214- 12-57 8.86 13.13^ 

ND(in.-lb) 85OI 8.868'- 88* sU6o ' 8819.3 

Hpkb) J#3 ' -lift? .'8 -U99.S -500 - '• -500.6    • 

TD(") ' -7.0U , -l?'-!52 -12.51 -8.86 -13.152 

•Tha,.moment   distribution  Is   shown  In   figure  9   for  the   so-, 
lutloas  by. jrelaxetion,   matr>lcee   (including the   effect   of 
shearing  and „ext ensi onal  deformations),   and   graphic  analysis.. 
The  curves «are  very  isuch  alike. •    • «• 

.    FÜRTHSK   ILLUST3ATIVS   EXAMFL3S 

The Pr.oblan  of Distributed  load» -. •    • 

Tha   first   example  taken up  in   this  chapter,  deals  with 
the calculation  of the  bending moment  distribution In a  cir- 
cular  ring  frame   of  a  fuselage   the   loading  of  »hich  consist.«/ 
of two  equal  and   opposite  forces  which add  up  to  a  moment   in 
the plane   of the  ring,   and  of  the  balancing  shear  flow trans- 
mitted   to   the  ring   from  the   sheet   covering  of-  the   fuselage. 
(See   fig.   10..)     It   is   customary  to  assume  that   the  shear   flow 
can  be  calculated   from  the   formula     q  =  T/2A,     where     q.    Is 
the   shear  flow  in  pounds  per   inch,     T     the-torque in  inch- 
pounds,   and    A     the  area  of the   circle  in   square   inches. 
Recent   investigations  by tfignot.   Combs,   and Snsrud   (reference 
10),   and  by hoff   (reference  11)   showed  that   in   sections   of 
the  fuselage  adjacent  to-rings  loaded  with   concentrated   for- 
ces  the   shear  flow differs  considerably  from  that  predicted 
by  classical   theory,   unless  the   ring has  an unusually  large 
banding  rigidity.     Because   of  Its  basic  assumptions  the:clas- 
sical  theory holds  only at-a distance   from  the   load  applica- 
tion  which   ie  of  the   order  of magnitude   of  the   diameter   of 
the  fuselage. 
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• It la not'tn« purpose of the< present report .to lnvestl- • 
gat« the- shear, flow In the- thija'wall- of a monocoque fuselage, 
The report, deals only. with, the calculation of the bending 
moments in rings the loading" of which 1« specified.  It will- 
be assumed, therefore,: that the shear flow in the present ex- 
ample Is constant and has the value predicted by classical 
theory. 

The procedures developed in the 
be easily extended to Include the eff 
loads.- The basic Idea in these proco 
"the ring into a number of units, and 
.points of the units. The clamps were 
at the.different points in turn perml 
value of one displacement coordinate 
•ore of the units are loaded with dis 
the present case with the constant eh 
be considered as curved beams the end 
clamped to the constraints. The stat 
actions (including reaction moments) 
be calculated with the aid of the cla 
Forces and moments equal "In magnitude 
these reactions are the loads transmi 
because of the distributed l^oads of t 
forces at the constraints do notdiff 
the concentrated external loads of th 
preceding chapters. They can be take 
in the manner shown before by relaxet 
procedure, or by solution by matrices 
reference 7 takes care of distributed 

preceding chapters can 
ects of distributed 
dures was to break up 
to clamp rigidly the end 
then removed partially 

ttlng a change in the 
at a time.  When one or 
tributed loads, as in 
ear flow, the units can 
s of which are rigidly 
ically indeterminate re- 
at the constraints can 
sslcal beam theory. 
and ooposed in sense to 

tt&d to the constraints 
he curved beams.  These 
er in any respect from 
e rings discussed in the 
n into account, therefore, 
ion, the growing unit 

The graphic method of 
loads directly. 

The problem at hand reduces, therefore, to the calcula- 
tion of the statically indeterminate reactions of curved: 
beams.  In reference 6 the calculations were carried out "for 
beams having arcs of a circle for their median line the load- 
ing o-f Which'consisted' of «uniform shear flow.  It is be- 
lieved that' any ring tfa'n be represented by arcs of a circle 
with an accuracy sufficient for "engineering applications. 
Similarly, "any variable shear" flow over an arc may be replaced 
by a number of constant shear flow's acting upon portions of 
the arc.      <-   

Tor »Ion of a' Circular Sing 

Basic fd.ata-~ Figure 10 shows the circular ring of a fuse- 
lage and its loading.  The latter consists of two 100-pound 
vertical loads of opposite sense, and' the balancing shear- flow 
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transmitted  to  the ring fron the   sheet   covering.     The  lnten- 
Mty of the  shear  flow is   -     - 

q  = T/2J,  -   (100 x  20x   £)/(»TTX20*)   • 1.1253954  pound» per  loch 

(50) 

The  cross-sectlonal   area and  the  moment   of Inertia  of the 
aeetlon   shown  In figure  10 are . 

A =  0.250  square  Inch I m  0.1666 Inch4 

The latter le taken about the horizontal centroldal axle. 
The ratio (,     of the effective ehear area to the total cron- 
•eetlonal area of the aeetlon was calculated from equation (..) 
of reference- 5: 

I -  0.160 

Because  of the antisymmetry only one-half of the ring 
need  be  considered.     The half ring is  subdivided In tiro units, 
one  extending from point    A     on  the axis  of  symmetry to  the 
external  load  (point    B),  the  other from  the  load to point     C 
on  the  axis   of  symmetry of the ring.     The  angles  subtended  by 
the  arcs  are  45° and  135°,   respectively.     The parameter 

V » Ala/1 

has  the  values 370.258  and 3332.32,   respectively,   for arcs 
AB    and    BC.     VIth 

45°  -  0.785398175 radian    and    135°  -  2.3561945 radians 

K    and    A    are calculated as In  the preceding chapter: 

K a  1.0120785 X m 0.9912535 

These  values  are  valid  for  both arc*. 

Influence  coefficients.- The  influence  coefficients 
were  calculated with  the r.Id. of reference 5 In .the  same man- 
ner as was done  for  the  ef r-nhape  ring of  the preceding 
chapter.     Since  the c-oss  section  of the ring Is constant, 
itl     Is a  constant  factor  In every Influence  coefficient.  . It 
Is convenient   to assume  Its value as    106 pound-Inches3 
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rath»»1   than  to use  the  aötual  value.     If the unit  displacement 
la taken a»  lcr3   Inch and  the unit   rotation a«  10~3  radian, 
the  Influence  coefficients  of arc    AB     become: 

fiDK - 281.950 

ri-jj » 11.178 

'nhjr  •  -29.966 

•p>. 6.633 

n>K = -42.385 

rtjj » -20.559 

nry » -4.733 

rtj »-23.441 

nt„ - 49.079 

ttM = 52.296 

nty » 64.675 

ttf  »  51.516 

,(51) 

The Influence coefficient» of arc  BO  are: 

I 
I 
I I 

fihM  a  157.899 "M ' -10.942 ntM  a  1.563 

rrji  «       1.160 rtM r -0.419 OH  *  0.332 

«Tny •     06.5117 nry • -8.843 nlji   a  6.633 

fry  =       1.116 Fly * -0.634 ftj>  B  0.068 

(52) 

Operntlona Table 

The operations table can be established now according to 
the principles discussed earlier.  Became of the ant 1 symme- 
try points A nnd 0 cannot move vertically.  (See refer- 
ence 9.)  Consequently, rA    and VQ are not lifted In the 
operntlona table (table 11).  Horeover, there la no need for 
balancing out HA and fig In the relaxations since whatever 
values are obtained for them during the relaxations of the 
right-hand side of the ring, values of the sane magnitude and 
opposite sense would be caused by the antisymmetric distor- 
tions of the left-hand side of the ring.  It was also found 
convenient to move point  C as well as A during the relax- 
ations.  This la a deviation from the procedure followed in 
the relaxation of the egg-shape ring. 

«ffect of the shear flow.- The next step in the calcula- 
tions Is the determination of the effect of the distributed 
shear. The reactions of the shear flow at the constraints, 
acting upon the curved beams and taken according to the beam 
convention of signs shown In figure 6a, can be calculated 
from eouatlons (33) of reference 5.  For arc AB the values 
of the determinants are: 
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Aq - 0.144 6636« r • 2.89.3 2727 

&T     - 0.008936527 qr' 

-At  • 0.05623000 qr
s 

- 5.3093649 

l 4.0228506 

25.3078929 

(53) 

f 

Division of the numerator determinants by the denominator de- 
terminant gives the moment, the radial force, and the tangen- 
tial, force' acting upon the beam at the support toward which 
the shear flow is directed: 

n = -1.8350724 Inch-pounds 

r  • 1.3904153 pounds 

t  = -8.7471509 pounds 

(54) 

1  . 
The corresponding values for arc 30 are: 

Aq • 1.26215684 r • 25.243136« 

3 -Ah • 0.1489809 qr 1341.3002 

Ar • 0.7079546 qr3 • 318.69158 

-A*  • 1.3379626 qr 602.29481 

n  a -53.135241. lnch-pound3 

r  = 12.624880 pounds 

t  a -23.859745 pounds 

(55) 

(56) 

As mentioned before, these forces and moments represent 
the reactions upon the beams.  The forces and the moment act- 
ing upon the constraint at section A have the values given 
In equations (54) multiplied by -1.  If the signs, are now 
converted to agree with the rigid frame convention of figure 
6b, the final values become: 
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•Tj, • -1.6360784 inch-pounds 

BA •  -1,3904153 pounds 

TA > -6.7471609  pounds 

(67) 

In section ' B  the reactions ucon beam AB can be ob- 
tained by multiplying by -1 the values given by equations 
(64) since the shear flow is directed away fron point  B. 
The signs of the reactions so calculated are in accordance . 
with the bean convention. The different steps needed for ob- 
taining the effect of beans AB and BO upon the constraint 
at B are summarised below: 

(la.-lb) 
*B 
(lb) (lb) 

h 

11 
I 

Reactions upon    AB,   beam 
convention,   shear  flow 
away from    B   (from equa- 
tions   (54)) 

Action  of  beam    AB    upon 
constraint,   beam conven- 
tion 

Action of beam AB upon 
constraint, rigid frame 
convention 

Reactions upon    BG,   beam 
convention,   shear  f,l.ow 
toward    B   (from  equa- 
tions   (56)) 

Action  of  beam    BC    upon 
constraint,   beam con- 
vention . 

Action of beam BC upon 
constraint, rigid frame 
convention 

Total unbalance« due  to 
shear  flow 

1.6350724       -1.3904153 8.7471609 

•1.8360724 1.3904153       -6.7471509 

-1.8350724 1.3904163       -8.7471509 

-53.135341 12.624880       -23.859745 

53.135241       -12.634880 23.859746 

•63.135241       -12.624860      -23.8597450 

•64.970313       -11.2344647    -32.6068969 

'/ 

1 



IAOA T» le. 998 se 

The 100-pound vortical downward external load at B 
alto contributes to the tangential and radial unbalanced 
foroee.  If thle le resolved In the radial and tangential 
directions, the reeult le 

Ig m  70.710678 pound« TB * 70.710678 pounds 

ii 

Hence the total unbalances are . 

»B  «  -54.970313 Inch-pounds 

»B *  69.4762133 pounds 

Xj - 38.1037831 pounds 

|  ••"•    (68) 

In section C the reactions are the values given by equa- 
tion'*.(-96) multiplied by -1 since the »hear flow le directed 
away from point  C.  The action upon the constraint Is ob- 
tained.by one more multiplication by -1.  The change from the 
beam'convent Ion to the rigid frame convention does not entail 
any'change» In these values.  Hence the final .values.'of the. 
unbalaneee are 

' 1'fl' « -53.135341 Inch-pounds 

B> « 13.634880 pounds 

Tc • -23.859745 pounds '    | 

(59) 

Solutl'on by rolaxatlpnp.-. The relaxatiop .wae- carried out 
In table 13.' It'may be noticed that It was more. Advantageous 
to carry out operations on the longer, than on the' shorter 
arc.- Moreover, sequences of the rotations wj, wj, *x    were 
found useful. .•«''. 

from the toted, motions of- A  and. .3  the radial force 
at A can be calculated. The motions are.,, at oomouted fron 
table 12: ,-"....'.'' 

:w, '• 1.1(5 x 1Q radian 

uA i  -4.87 x 10~
3. tncjh'.", 

*3*m '-2.96 .x.:lp~* ..radian 

na 
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Theea motions must be multiplied by the respective influence 
coefficient* as given in equations (51).  It should be remem- 
bered, however, that In the calculation of the Influence co- 
efficients the beam convention was.used, so that the forego- 
ing motions must be transformed to conform with the. beam 
convention.  Reference to figure 6 discloses that the signs 
of wA and uA must be changed, while the sign of. wB 
remains unchanged'. ' Consequently, 

wA - -1.16 x 10"*3 radian 

wB • -2.96 x 10 radian 

u. - +4.87 x 10~3 Inch 

vB x uB - 0 

With these values the radial force becomes 

BA = 1.15 x 43.385 - 4.87 x 20.559 + 2.96 x 4.733 = -37.3699 
pounds 

This force, caused by the distortions, ha* to be added to the' 
radial' force' caused by the shear flow and given in equations 
(54). Altogether, • . 

RA • -37.3699 + 1.3904153 • -35.979 pound 

Since the tangential force and the moment at  A have 
the value iero, the bending moment distribution along the 
ring can be calculated with the aid of the elementary method* 
of statics.  The momenta are caused by BA  and the shear 
flow along arc AB,  and by fiA,  the external load, and the 
•hear flow along arc SC.  The actual calculation is not 
shown here.  It will be taken up In connection with the ana- 
lytical solution of .the problem.  The bending moner.t distri- 
bution 1s shown In figure 12. 

Solution by the growlap unit procedure.- The problem was 
also worked out' by the growing unit method. In these'calcu- 
lations point C was considered as rigidly fixed. This fix- 
ation means, only that the three, possible rigid body displace- 
ments of the ring in its plane were eliminated. The change* 
in the shape of the ring caused by the loading were in ho way 
restricted by the assumption. 

As a first step, section A was rotated through an angle 
of 10-3 radian. The effect of this rotation upon B 1* the 
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appearance of the unbalances listed In the third to fifth 
columns of the operation! table (table 11). 

Next, section B was displaced and rotated, while sec- 
tions A and C were held fixed, In such a manner as to balance 
out the unbalanced forces and moment at  B.  The necessary 
motions of  B  were calculated from the following three si- 
multaneous linear equations: 

(60) 

(61) 

-439.649 wB * 31.443 v3 - 50.642 uB • 39.966 

31.443 wB - 13.338 v3 + 30.14 us - 4.733 

-50.643 wa + 30.14 rB - 53.618 uB • -64.675 

The solution of these equations Is 

wB *  -0.11135692 x 10~3 radian 

rB «= 4.035013 x 10"3 Inch 

uB • 3.880754 X 10~3 inch 

The effect of these notions upon  A  can be computed from 
the operations table: 

SA = 39.966 x 0.11135693 - 4.733 x 4.035013 + 64.675 X 3.880754 

* 170.553 Inch-pounds 

T. • -64.675 x 0.11135693 - 23.441 X 4.035013 + 51.516 x 3.880754 

= 50.6E3196 pounds 

The effect of the-unit rotation of  A upon  A (when  B  Is 
fixed) is llst.d in the operations table: 

rA  =   -49.079   pounds 
»A  -  -381.95  inch-poundr 

Altogether,- ' •• 

*,,•.*••! ,95.1,0.552,.ail.398   inch-pound. | 

'A-  60.653185  -49.079.  1.574185 pound. (63) 
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These are the moment and the tangential force obtained at  A 
when A  Is rotated through a unit angle, and  B  moves In 
such a manner as to cause vanishing unbalances :<t    3.  In 
other words,  I«'A and  Tj,  of equation (63) are influence 
coefficients of the expanded unit arc  AC. 

The Influence coefficients of arc AC corresponding to 
a tangential dl«placement of A can be obtained In a simi- 
lar manner. When section A la displaced tangentlally through 
a distance of 1C~3 Inch, the unbalances at B are the Items 
listed In the third, fourth, and fifth columns of the second 
row of the operations table. These unbalances vanish If the 
motions of B  satisfy the following equations: 

-439.849 wB + 31.443 v2 - 50.642 u3 = -64.675 

31.443 w3 - 12.338 vB + 20.14 uB = 22.441 

-50.642 w3 + 20.14 v3 - 52.618 uB = -51.516 

The solution Is 

>   (63) 
I 

w£  =   C.032242916   x   10  a   radian 

vB  •  -0.53033016 x   10~3  inch 

u3  =   0.7546986  x   10-3   Inch 

(64) 

The  effect   of these  motions upon    A     can  be   computed  from 
the   operations  table: 

»A = -29.966 x 0.022CU2916 + 4.733 x 0.53023016 + 64.675 x 0.751*69^6 

= 50.653185 i.ich-pounds 

TA = 64.675 x 0.022242916 + 22.41*1 x O.53023OI6 + 51.516 x 0.751*6936 

= 52.216509 pounds 

The  effect   of the unit   tangential  displacement   of    A    upon 
Itself Is  again  taken  directly from  the   operations  table. 

-49.079  inch-pound:; CA a  -53.296 pounds 
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»A » 50.6e3ie5 - 49.079 • li674186 inch-pounds 

IA • 62.216509,"- 62.296 = -0.079491 pound     j 

Then« are the Influence coefficients of are  AC  sought. 

In the next step, the.external loads acting upon  B 
are balanced out by moving section B.  The necessary motions 
can be calculated from t.hre.e linear'"equations the left-hand 
members of which are Identical, with those of equations (60) 
and (62).  The right-hand members are. the unbalances of equa- tions (58); ' 

. 64.970313      '"• - 

-.59.47621 

-38.103782 

Th • solution Is 

»i - ;0.2815947 x 10-» radlaa 

Tfi " 16- 7320519 x l0-3 ln<jh 

«B - 6.8574788 X   1Q->  lnch 

A  isi 

(66) 

The effect of these displacements up 

1TA = -29.366 x 0,28159^7 - ^733 * 16.7320519 + 64.675 x'6.PS57MS 
• 355.3761t "iach-pounds 

TA = 6U.6/5 x 0.28159^7 - 22.VU x 16.7320519 + 51.516^ 6.857U7S8 
n -4.OOI96U pounds 

These  are   the unbalances   caused  at'   A     by  balancing  out   the 
unbalances  at     B.     To  these  must   be  added  the  unbalances 
caused   at     A     by the   shear   flov as   given   by  equations   (57). Altogether,   the unbalances at     A     are; 
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PA  •  355.8764  -   1.8350734   >  354.04133   inch-pounds! 

TA  -  -4.001964  -  8.7471609 --13.749114  pounds       / 
(67) 

The unbalances ouoted fn aquation« (67) must then be 
balanced out by moving A which la now considered as the end 
point of the expanded unit  AC.  The requirement of vanishing 
unbalances at A can be written with the aid of the influ- 
ence coefficient» of equations (62) and (66) as 

1«: i <.: •:••;.•."•. .      ;    • 
.1 -J • * 
! -111.398 wA  *:l,.674il86 uA  - -354.04133 

1.57418Bi: ifA -' 0.079491  uA = 12.749114 
(68) 

The  solution  of these  equations is 

wA -  1.2660489  x  10~3   radian 

uA •  -136.31193  x   10" Inch 
(69) 

The  values  contained  in equations  (69)   completely de- 
fine  the deflected  shape-of the ring,    Equations  (61)  and 
(64)  contain the data necessary for the  calculation of the 
notions   of    B     due  to  the di eplaeeaer.t s  of    A: 

wj = -1.266oifa9 x 0.11135692 - 135.3X193 x 0.02221*2916 = -3.1507157 

rB = 1.2660^9 x U.035013 + 135.31193 x 0.53023016 =76.85607Vt 

vu m 1.2660U89 x 2.83075U - 135.31193 x O.75W9S6 = -SS.k7P.We 
'..  .  , ;7:'-- •     ? ..• - 

To these motions those undertaken when B  was balanced must 
be added.  The latter are stated in equations (66).  Alto- 
gether,      .  . 

vB =* -3.1507157 + 0.2815947 - -2.869121 x 10~3 radian" 

vB • 76.6560744 + 16.7320519 - 93.5881246 x 10"
3 inch ]>  (70) 

u3 a -98.4724888 + 6.8574788 - -91.616010 x 10~
3 inch 
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Equation« (69) and (70) represent the complete specif1oatIon 
of the distorted shape of the ring elnee eeetlon C was con- 
sidered as rigidly fixed. The value of HA can now he cal- 
culated easily with the .«Id of the Influence coefficients 
listed In equations (Si).  It must be remembered, however, 
that the Influence coefficients are always calculated In ac- 
cordance with the beam convention.  In this convention the 
notions of end section B.of beam AB have the same signs as 
la the rigid frame convention.  The motions at A,  however, 
must be transformed' to read: 

WA - -1.2660489 x 10"
3 radian 

uA - 136.31193 x 10~
3 Inch 

(71) 

Hence, 

BA * 42.385 x 1.3660489 -. 20.559 x 135.31193 + 4.733 X 2.869121 

• 6.633 x 93.5881246 + 22.441 x 91.61501 • -37.93446 pounds 

It must be remembered that an unbalanced radial force of 
-1.3904153 pound wasapplled at A because of the distributed 
shear, as stated In equations (54).  If this is'added to.the 
value calculated above for BA,  the following final shear 
force in section A is obtained; 

H. -36.544045 pounds (72) 

Knowledge of the shear force in section A permits Vh'e calcula- 
tion of the bending moments in the ring,  The calculations are 
not shown here.  They are discussed in connection with the 
analytic solution of the problem. 

The forces and the moment in section C are: now deter- 
mined since they can serve as a check of the accuracy..pf the. 
calculations.  If the influence coefficients given in equa- 
tions (62) are Used, the motions of section B as stated in 
equatlone (70) must be transformed to conform with the .beam 
eonvention: 

»B "2.869121 x 10~3 radian 

vB  - 93.5881246 X  10~3 Inch 

n3  -  91.616010 x   10~3 Inch - -:   .- T 
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Then, • ' 'ri •.-:.•/      ••» '••. 

.1 :fj ...... 

>0 - 06.6117;X;8J«69121 - 8.842 x 93.6881846 +6.633 x 91.616010 

• -67.77665  Inch-pounds .,. 

B0  - -8.843 x   3.869131  •  1.116  X  93.6881346  -   0.634  x   91.615010 
i 

• 31.069316 pound« 

Z0 - 6.633 x   3.869131  -  0.634 x  93.6881346  •  0.0686 x   91.615010 

•'-33.736486 pounds 

I 

I / 

To these value» must be added the forces and the moment caused.- 
at  C  by the «hear flow In bar  BC.  Equation» (56) contain 
these quantities.  The signs, however, mustj.be changed since 
the shear flow is directed away from section C.  Addition gives 

H0 . -67.77656 + 53.136341 » -4.641309 Inch-pounds 

Kc • 31.069316 - 12.634860 a 18.44444 pounds 

?0 • -23.736486 + 23,859745 *  0.123259 pound 

ds  " y(73) 

nd: :;.jv::-;.! 
The terms  HQ  and  TQ  should be zero because of the anti- 
symmetry.  Since the maximum; bending-moment In the ring Is 
-483 Inch-pound, the deviation from zero Is only about 1 per- 
cent of the maximum.  The deviation of TQ  from zero Is 
aBout 6.1 percpni of :the applied-ioää-'of lOO'pounde.  The 
chick-'of • Hc •" can be made''as follows! " H. - Ec' Is  -54.98849 
pound. Tiils quantity represents the. total shear-transmitted 
through the plane of symmetry of the'ring. The' shear Is act- 
ing upward because of the negative.sign. The vertical com- 
ponent of the. shear flow acting upon the rlgh.t-hand side of . 
the ring is. 1.1253954 x 40 - 45.015816 pounds. This Is also 
directed.upward. Altogether, the upward force upon one-half! 
the ring Is 

64.98849. + , 45., 01-58]. 6 .* 100.004306 jpounds 

It should be equal to the lOOJpound downward -external force, 
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Matrix  solution This problem «ret alto   solved by the 
method  of matrix transformatlons a«  shown In the  appendix. 
the aotlons obtained are listed below: 

wA - 1.864.9 x 10~3 rad,lan , 

uA • -135.3985 x 10~3 inch 

WB  -  -2.8709 x   10~3 radian      \ (74) 

•-  -  93.6280 x   10~3   inch 

.u„ - -91.6842 x  10~3  inch 
. ! . ~ J 

Section 0 was again held fixed. 

The displacemente according to equations. (74) are In good 
agreement with those found by the growing unit" procedure and 
listed in equations (69) and (70). 

Analytic solution.- In the analytic solution again the 
lowermost point of the ring is considered fixed.  (See fig. 
11.)  In the section at the topmost point the unknown tensile 
force  T,  shear force  V,  and moment  N  must be applied. 
Because of the antisymmetry, however,  N = T  = 0. Hence the 
bending moment is caused only by V,  i'be external concen- 
trated load of 100 pounds, and the shear flow.  The contribu- 
tion of the latter can be calculated with the aid of figure 
lib. 

The shear force acting upon the infiniteeiJoal element of 
are subtended by the angle d| Is  qrdi.    The moment  dX 
caueed by this shear force at '? Is 

dM a aqrdl = r [1 - cos (cp_£)] qrd I 

The moment Mq, caused at  <p by all the' shear 'flow from 
I   « 0 to t   = cp  is consequently 

Up » / qra [1 - cos (cp - £)] d{ « ^r'  (<p - sin (*>)  (73) 

The total moment Is 
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"»   "  "r*   W -   .ia <p) + *r   tli 

0 < <P < 45° 

li 

»a  •  qra 
•1B cp)   +  7r • In 

"hei 
9 +  100 r(si, 

<P -   0.707)   (76) 

4a° < i <P < iaoc 

Th •   «trail iner 
&  of  bending  I, 

2*1./ •i     rd<p 

Ac "'ding  to  Ca 

!SI   / 
%5C 

HO" 

"a     Pd tp 

•tiglia no's prl, dpi« 

The AM •'•ntlati, 

dU/d? 

*.ay. be  earn ed 
°«t  before  th 

dU 

dv 

4 Su 

o d7 SI 

^.thi 

1»0C 

•q»*tloa  l 
»Pfratlon.   ind 

"*•*<• 

dMj 

dV 

e  integratl 

dip   a    0 

on: 

•   obtained; 
lcated are   earrl e<l   out,   t he   follow!, 

qr  +  v 

Si 

+   (200/TT)[(3n/8)   . 
nee f'l/4) •»07]   =   o 

q - (loo x 2t x 

th »   she »r  f0 

°-?07)/fCnp«) 

rce   be comes 

-36.5766 
(77) 
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It may be seen that this value agrees well with those ob- 
tained for HA *n tne earlier solutions. Substitution of 
q,  r,  and V in equations (76) leads to the final expres- 
sions for the bending moments: 

Mx a 4S0.16 (V -   »In <p) - 731.53 sin <P • 450.16 <p 

-.1181.6? sin qp,   (76) 

6 < tp <  45° '•* . 

,.'•> : •   •> : 

when 

Ma • 450.16 (<p - itn  <J>) - 731.53 sin <p + 3000 (sin <p - 0.707) 

* -1414+450.16 ep ,+ 818.31 sin <p (79) 

when   ... ...    , . 

The bending moment diagram Is shown In figure IP. 

•46? < <P < 180° 

Torsion of the Braced Circular Ring 

In actual airp 
nally braced wMen 1 
into them.  Such a 
13.  Since the addi 
cally Indeterminate 
the work Involved 1 
the bending moment 
volved than It was 
article.  Because o 
volvea only the det 
ring proper and thr 
Increase In the wor 

lane fuselages the rings are often lnter- 
arge concentrated loads are Introduced 
braced circular ring Is shown in figure 
tlon of the brace causes six more stati- 
quantltles to appear In the calculations, 

n the analytic solution of the problem of. 
distribution becomes very much more la- 
in the case discussed in the preceding 
f the antisymmetry the actual work in- 
•rmlnatlon of one unknown quantity in the 
ee unknowns caused by the braces.  The 
k is then as follows: 

Calculation of 5 moment diagrams. Instead of 2 

Calculation of 14 definite Integrals Instead of 2 

Solution of 4 simultaneous equations for 4 unknowns, 
Instead of getting 1 unknown from 1 equation . 

In the methods proposed in this report, the additional 
work consists only of the calculation of the Influence coef- 
ficients of the braces.  Because of the effect of the braces 
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'he numerical value* in the Operation« table will be differ- 
ent, but the number of entrlee In the operations table will 
remain the tame.  The solution of the problem by.relaxations 
or by the growing unit'procedure will, therefore,'not in^ 
volve any more work than in the case of the ring without the 
brace.       • --* "" 

The length of the diagonal 1e  I- = 36.955182 inches. 
Its cross-sectional area is  A = 0.125 square Inch,  and its 
maximum moment of Inertia  I * 0.020833 inch .  Since in the 
calculation of Vh* influence coefficients of the-'rlne: in 
equations (51), SI  was assumed to be  10" pound-Inches 
while  I  was  0.1666 Inch4,  the, calculations will be con- 
sistent only if SI  of the brace is assumed 

•y 

II » (0.020833/0.1666)10S • 125.000 pound-inches8 

This means', of course, that the deflections to be calculated 
would be the actual ones if the material had a modulus of 
I = 6 x 106 pel.  With aluminum alloys, or steel, the values 
must be multiplied by a constant factor. 

*     •••'*••.*.. • 

' ''The„ratlf}'„ i  «AT/A  is again-0.16.  Consequently; ' ' '•" 
t • •|l'?4.1131  and the .product t\  a 1311.0581.  The Influ- 
ence coefficients for the movable end of the straight bar 
were qaleuiate,4 fro» equations (25) of reference 5: 

- 13.4379 

rrx  x  0.0294516 

nrM ;- -0.544194.. ,Ä'tjj' 
(80) 

• 20.2949 

The influence coefficients for the'fixed end were determined 
vlth the aid of equations (29) of reference 5: 

nnj = -6.67292 

fp. - -0.0294516 

nr7 • 0,544194 

R, = 0 

nljj = 0 

t17 = 20.2949J 
,(81) 

Since in the operations table points  B  and  C  are 
moved tan^entlally and radially to the circle, it la neces- 
sary to convert the above influence coeff.icl.eaVs into values 
that correspond to those displacements.  for instance, a 
unit displacement at  3  tangentlally to the circle downward 
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to the night 1« equivalent to a tangential (longitudinal) dis- 
placement of  -ein 32.5°  for the straight bar combined with 
a radial (perpendicular) displacement of  cos 32.3°  for the 
straight' bar, when the 'baa« convention of figure 14b 1« used. 
With 

.' »la  88.5°  »  0.3i8268 cos  22.5°  •  0.9 8388' 

the   follo-in -  forces  and  moment   are   obtained   at     B,     acting 
upon  the   straight   bar  and  designated  according to  the  beam 
convention: 

NSB  •  -0.S44194   x  6.32388  =  -0.5027?  Inch-pound 

R3B  a  0.0294516  x   0.98388  •  0.02781  pound 

T3B   =   -20.2949   x   0.38268   =   -7.76845  pounds- 

where   the   subscript     S3, deslgnat.es  that   the   forces  and   the 
moment   are   based upon  the   system   of  coordinates   of  the 
straight   bar.     They must   be   converted  to  conform with the 
system  of  coordinates  based   on  the   circle   before  they  can  be 
entered   In   the   ooeratlons  table.     If  the   subscript     C3     re- 
fers  to  the   system  of, coordinates   of t-he  circle,   and  use' Is 
made   of  the  diagrams   of  figures  14c  and   14d,   the  following 
values  are   obtained: 

H0B 5; »SB ' -0 50277 lnch- pound 

H0B = -RSB sin 32.5° - TSB cos 22 5 

(0.02721)   x   0.38268  +   (7.76845)   x   0.92388   =  7.1667  pounds 

lCB S3   COB   «?S • 5 TSB   sin  22,5C 

(0.02731)   x   0.92388   +   (7.76845)   x   0.38268   •   2.99B0 pounds 

The  forces  arid  the  moment   Just   calculated represent  the  action 
upon "the   structure;     Kult loll cat Ion  by -1   converts  them  into 
the  effect   of the   structure upon  the   constraints,   taken  in  ac- 
cordance with  the  rigid  frame  convention  bared  on the circle. 
These values  must   be  added to  those   listed  In  the   operations 
table   of  the  circular  frame without  bracing   (table  11).     The 
sums  have  been  entered  In  the  new  ooeratlons  table  (table  13). 
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The effect of a radial displacement and of a rotation 
can be found in a alnllar manner.  As a further example for 
the resolut lone, the effect upon  C  (the fixed end) of a 
unit rotation of  3  (the movable end) Is now considered. 

A unit clockwise rotation of section B of the circle Is 
the positive unit rotation of section B of the straight bar 
as shown In figure 14b.  The forces and the moment caused at 
C  by this rotation are given In equation (81): 

•:'•*-.: • •    • 

NSB  a  -6.67292  Inch-pounds 

B8B x 0.544194 pound 
•:•:* ,. ... 

*SB = 0 

These quantities are the forces and moments, acting upon the 
straight bar at  C  and taken according to the beam conven- 
tion shown In figure 15b.  A positive moment  Ngs  at  C  Is 
counterclockwise.  Hence, the moment  HQB taken lii accord- 

ance with the rigid frame convention of the, circle has the 
opposite sign:      ... •,:';,, ,<    .'' 

s03 ~ ~HSB * 6.6739.2 inch-pounds 

The radial force  RSB  Is resolved with the aid of figure 15c: 

H CB 

:CB 

-RSB   sin  22.5°  =  -0.544194   x   0.38568=  -0.20825 pound 

-BS5 cos 22.5
e -0.544194 x 0.92388 • -0.50277 pound 

The values of HQS,  
SCB*  TCB  must be multiplied by -1 

in order to obtain the effect of'the structure upon the con- 
straints as required, for the operations table. 

The operations table for the braced circular ring is 
presented as table 13.  It was used In the relaxations con- 
tained In table 14.  As may be seen, the relaxations were car- 
ried out in the same manner as in the case of the ring with- 
out bracing.  The absolute magnitudes of the deflections were 
found to be much smaller than before.  For the shear force at 
A  the value  -6.4964 pounds was obtained. 



BAOA TI Ho. 998 69 

ll 
:», 

11\ 

The distortion« were determined aleo by the growing unit 
procedure.  The Individual etepe In the • ee.leulatl.pn. are not 
glren here since, except for the numerical value», they were ' 
identical with those pre slanted In the preceding article. 
Section C was again assumed to he fixed.  The' distortions 
were found to he: 

wA • 0.57486859 x 10~
3 radian 

uA - 6.499450 x 10~
3 Inch 

«3 - -0.04252815 x 10~3 radian \ 

TB - 0.21585307 x 10~
3 Inch 

ttB • 7.4627458 X 10~
3 Inch 

(63) 

• r... . 

Comparison of the values given In aquations (82) with 
those contained In equations (69) and (70) reveals the great 
•tlffening effect*, of the, braces. 

The value of the shear force in section A was found to 
he -6.460 pounds. This value deviates from that obtained by 
relaxations by 0.6 percent.  The bending moment diagram Is 
shown In figure 16.  It may be seen that, the Introduction of 
the braces resulted In the reduction of the maximum bending 
moment from -482 Inch-pounds to  -58.1 Inch-pounds. 

The problem was also solved by the method of matrices. 
The resulting distortions differed only Insignificantly from 
those listed In equations (82). 

Torsion of the -Sgg-Shape Hing 

The egg-shape ring and its antisymmetric loading shoijin • 
in figure 17 are the same .as those presented In reference 7.' 
The shape of the structure le identical with that used.ear- 
lier in this report.when the'bending:momente caused by two 
equal and opposite forces were calculated.  A« In the case 
of the twisted circular ring, it is assumed that the shear 
flow transmitted from the sheet covering of the fuselage to 
the ring Is constant and can be calculated from the formula 

T/2A 
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In the present ease the torque 

T a 100 x 30 = 3000 Inch-pounds 

while the area included by the ring 

A.,a> 2757.642 square Irenes 

Hence, 

•q = 3100/(8 X 2767.642)- 0.54394298 pound per inch 

When the operation! table'was aet up, the shearing and ex- 
tenelonal strain energies were neglected.  This ie equivalent 
to setting  1/V • 0,  as was explained when the loading con- 
sisted of two equal and opposite forces.  The ancles subtended 
by the units considered are: 

Arc AB 0.84506211 radian 

Arc BO 0.52137719 radian 

Arc  DS      1.7721543 radians 

The influence coefficients were, .ca.lcul.a-t ad and the oper- 
ations table war, established according to the procedure dis- 
cussed in the earlier parts of this report . ..The . operations 
table is reproduced as table 15. •••It served as the basis for 
the calculation of the distortions by the growing unit method. 
The distributed shear forces were taken into account as ex- 
plained in connection with the torsion of the circular ring. 
Point  S  was considered .-a» .rigidly, fixed.  Because of the 
antisymmetry,section A could not move radially. 

Solution by the proving unit method.- The application of. 
the grc 
si sted 
were ei 
mitted 
the lai 

rowing unit procedure to 
of three main parts. 

istnbllshsd; in the seco 
from sections B, 0, an 

ist part, the unbalances 

this particular problem con- 
In the first,the expanded units i 
nd, the unbalances were trans- 
d D to sections A and S; and in 
at  A  were eliminated. 

The bending moment diagram was calculated and is pre- 
sented in figure 18.  The dotted line represents the bending 
moments obtained In reference 7 by the graphic method.  The 
agreement Is reasonably good. 
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. • f  • Torsion of the Braced kg^-8hape Ring 

Tlgure 19 show* the braced egg-shape ring and lt.s anti- 
symmetric^ loading.  The cross section of the brace was taken' 
the saiie as In the case of the braced circular ring.  The 
length of the diagonal is 64.983655 Inches.  The influence' 
coefficients were calculated and the operations table was es- 
tablished according to the principles discussed earlier. 

The data contained In the operations table (table 16) 
served as a basis for the calculation of the deflections by 
the growing unit procedure.  The. results are: 

wA . -0.7703992 x 10~
3 radian \ ' itQ •  0.19370^40 x 10~3 radlan- 

-13.059222 X 10-a Inch •c • 9.243786 x 10;  Inch 

*B • -0.00896880 x 10"  radian  uCfl • -9.301079 x 10   Inch 

vB « 1.9469763 x 10"3 inch 

uB . -12.20075 x 10"
3 inch 

wjj - -0.1969334 x 10  radian 

rD > 10.421443 x 10 Inch 

The 'motions of. sections A an-d B in conjunction with the 
influence coefficients, permit the Calculation of the sheari-ag 
force HA in section A. 

SA = 6.3015 pounds 

The motions of  B  and the Influence coefficients of.the 
straight bar BS • .suffice for the calculation of. the forces 
and moments acting on b»r  BS.  When these are known'., the 
bending moment diagram of the ring can be determined. 

The bending moment diagram Is presetted in figure 20. ' 
It may be seen that th:e bracing was very beneficial, in redae» 
lng the bending ««meats. • - 

CONOUTSIOH'S 

The subject of.this report Is the numerical calculation 
of the distortions of and the bending moments in rigid frames 
(fuselage rings) of arbitrary sha-pe upon which known concen- 
trated and distributed loads are acting.  The calculations 
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consist of two major parts:  the sattln« up of the equation* 
characterising the oroblem, and their-solution. 

The equations are set 
number of beams, each havi 
and a constant (often sero 
coefficients of the indlvi 
with the aid of the -formal 
reference 5v  They can be 
entered in the operations 
Bade In this report.  The 
external loads, completely 
ways be established withou 

up by dividing the frame Into a 
ng a constant radius of curvature 
) distributed load.  The influence 
dual beams can be easily computed 
as, tables,'and graphs presented in 
combined into quant It lee that are 
table according to the suggestions 
operations table, together with the 
defines the problem, and can al- 

t difficulty. 

On the other hand, difficulties are encountered in the 
solution of the set of linear equations defined by the opera- 
tions table.  The fundamental reason for the difficulties is 
the fact that In most cases the bending moment, the normal 
force, -and' the shear force In sections of the- frame are ob- 
tained as small differences of large Quantities. 

Three methods of solving th 
sented. The first .1* the solutl 
systematic relaxations' »hlch is 
approximations. four numerical 
hov the Individual steps in the 
arranged so as to achieve a rapi 
ure. In most cases, however, it 
proper succession of steps. Bee 
of the growing unit was devised, 
dividual beams are combined into 
until finally the entire frame b 
each step of the calculation not 
linear equations must be solved. 
is the direct solution of the se 
means of the matrix calculus. T 
straight forward'and can theoretl 
The work Involved, however, incr 
divisions chosen, and because of 
large numbers occurring in the c 
culatlng machines may become lnd 

e linear equations are pre- 
on by. Southwell's method, of 
a procedure of step-by-step-.. 
examples five., an. indication .... 
relaxation procedure may be 
d convergence of the proced- 
ls not easy to find the 

aus« of this, the procedure 
In this procedure, the.in- 

uhlts of Increasing length 
ecoties a single unit.  In 
more than three simultaneous 
Finally, the'third method'" 

t of linear eouatlons.by 
he latter two procedures are 
cally always be carried out. 
eases with! the number of sub- 
the small differences of 

omputatlons the use. of cal- 
iepeneable. 

It 1B of interest to compare^ the numerical..proce.dures 
here suggested: with' known methods*'of analysis of ,t,he banding 
moments in fuselage rings.  Tully analytic methods' have been 
published only for circular and elliptic, rings, .for &  re- 
stricted number of conditions of loading.  Kings of arbitrary 
shape were discussed by Lundqulet and Burke (reference 6), 

«rt»minnW||IM>j!v)L 
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Hoff (reference 7),and da Plantier (reference 8), ring» wl£h 
additional Internal bracing element.! by.Lund quiet ana-Burke 
(reference.6),. Simple ring problems can be solved by any of 
these pethod» with comparative ease, eo that the procedures 
suggested in this report show no particular .advantages In' 
thee« ,qas«s, .-The numerical procedures af this report become 
advantageous when on» or more Internal bracing elements are 
incorporated Into the frame. The additional elements entail 
a slight Increase In the work of setting up the operations 
table, ;but the .solution of the equations does not necessitate 
an^, additional work.  If the equation« are solved by relaxa- 
tions, ..the.number of steps necessary may even become smaller. 
Since in the earlier-methods the work Involved In the calcu- 
lations Increases rapidly when redundant bracing elements are 
added to-the frame, the advantage of using the procedures of 
this .report increases with each added bracing element. 

Polytechnic Institute of Brooklyn, 
:•• Brooklyn, Hew Tork, February 194S. 
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APPMDIX 

PIftXOT SOLUTION Of A STSTXM Of LINEAR IWATIOBfS 

At «•• shown In the tody of this report, the operation* 
table represent* a set of simultaneous linear equations. 
The equations ean be solved directly by the method of elim- 
ination«,  Tne only difficulty lies in the great number of 
simultaneous eauations and the corresponding great number of 
unknowns contained in the operations table.  Because of these 
the numerical work is far too cumbersome unless the opera- 
tions are carried out in a systematic manner.  The systematic 
solution of sets of linear equations is one of the subjects 
Of the matrix calculus.  The elements of this discipline 
needed here are very simple.  An attempt is made, therefore, 
to present them in an easily understandable manner. 

first a set of linear equations will be solred by the 
methods of high school algebra.  Then it will be shown that 
the same calculations can be carried out in a more concise 
manner through the use of the matrix calculus. 

As an example, the following three equations containing 
three unknowns will be considered: 

• • • •. a x + t •*• s « e 

x+3y**«-9 

x*y + 3*-7 

Divide equation (la) by 3:. 

x + 0.5y+0.6s-4 

Subtract. (3) from (lb): 

1.5 y + 0.6 s • 6 

Subtract'(2) from (le): 

•0.6y+l,6*"3 

(la) 

(1») 

(le) 

(3) 

(»»Ji 

<3») 

It may,, be seen that equations (3) do not contain x <, > 
any more., »ext y ean be eliminated from equation (3b.) If. 
first equation (3a) 1* divided by 3> 
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ll 

0.5 y * 0.1fi6  « « 1.66 (4) 

•ad  subsequently aquation  (4}  li  subtracted  from equation 
(a*Ji . .   .... 

1.333  t - 1.333 (e) 

Squatibnk,. ,($),r(3h)',   and  (la) ban now be easily »olved for 
th» unknowns.  • Obviously, equation  (6) yield» 

v.';'-.,''.:-,'. :•. '., « • » <6> 

flubetitution  of  equation   (6) in equation   (3a)  aad  solution 
for ..jr.' , «five'« 

7 - 3 (?) 

finally equation (la) yield* after «ubetltutlon of equation* 
(6)  and (7)'i 

• ' • ~ • x - 3 (8) 

The aaae probloa «rill nov be solved using th» matri* no- 
tation.  The flrat achievement of the matrix calculus 1* 
eqonpay of writing.  A* Ion« as the first column always con- 
tains 'the x terms, the seoond the y terms, and the 'third the 
t terms, It is necessary to rewrite x, y,  and t.  ' The si- 
multaneous equations arc oharaoterlsed by the set of coeffi- 
cients arranged In an ordered array.  Thus the left-hand 
•embers of equation (1) oan be represented by the «et 

A m 

3 11 

13 1 

113 

(9) 

It 1*  customary  to enclose  the  set. qf coefficients  wl.thr 
in bracket» as  shown  in  equation   (9).     A,   or the  set' of coef- 
ficients  in brackets,   is  known as, a. "ma,trix. "     The nine num- 
bers  in the brackets  are  the ^elements'*" of the matrix. 

The  second  important device  in matrix  eaiculu» 'is  the 
operation called   »matrix multipjiifSaHon. •     This   operation 1» 
la many respects  very different  from what   la  known aa  multi- 
plication, in, ar4 then» ti,c «nd aJLg«>ra.     It  would, be bette,* per- 
hap«  t^o pflin a. new, word, fcor, t,h(i» .operation in order to aVntd 
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77 
misunderstanding.  This would necessitate, however, the memo- 
rizing of some artificial expression.  As things stand now, 
the operet.lon Is known as "multiplication" In mathematics, 
and engineers have to conform with the u.-ar.e.     They should 
rememter, however, that  matrix multiplication means the 
complex operation shown below, and cot what someone might 
Infer because of the famiiir.r expression "multiplication." 

The product of two matrices is again a matrix, the coef- 
ficients of which have to be calculated according to the fol- lowing rule: 

"I      r -i r -j a,     as     a3 I d,     da     d3 g,     ga     g3 

bJ     ba     b3|
x      •>     «a     ea " «i     *a     h, (10) 

«i     °a     °3l *i     fa     *a Ji     Ja     Ja 
where 

eö      1 
a    Ä   a   d      J. 
8 *<»       •.-.  • a,f2 

ni   •  b,d,   +  v ldl       ».«,   •  b,fl 
ha   • b,d    +  y, l0»       b»»3  + b,fa 

CU) 

'*>e  rule  ahn -' 

*«e  matrix V   e'u»l   to  th°
f aar  »rder.    V^I   ?an  ea»*ly  be 

below:   "«' *•  .*ampie\° JJ*"«*  •* «•?(%   %'*"•  °f - 
r        -i     r- fflat«-ix »ultipllo'0fn

col>»»ne)  la 

M    «I     J, .-] r lcatlon •'• «*., 
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(13a) 

**' the matrix 

Ü3b) 

1« «aid to be "premultiplied," in aquation (13b) "poetmultl- plled" by the matrix 

n 
With tha aid of the multiplication rule of matrices, 

aquation« (1} may now be written In the following form: 

Ca, 9, 7] 

(13} 



•stf'-A:X' 
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\\ 

The "row «atrix" /*•,/• «J 4« identical with the square 
••triz      ...'-"..'.... .' i 

x    y t 

0 0 0 

0 0 0 

Application of the multiplication rule to the left-hand mea- 
ner of equation (10) yields 

x y i 

0 0 0 

0 0 0 

2 11 

12 1 

112 

(2x + y + i) (x + Zy + z) (x + y + 2«) 

0- 0        0 

0 0        0 

(14) 

The right-hand member of equation (14) can he written as a 
row natrlx 

[(3x + y + a), (x + 2y•"*  t),   (x + y + 3«)] 

•o that equation (13) is equivalent to 

[(2x + y + s), (x + 2y + z), (x + y + 2s)J = [8, 9, 7]  (IS) 

Squation (15) expresses the equality -of  two matrices.  Matri- 
ces are considered equal if, and only if, all their corre- 
sponding elements are equal.  If one equates corresponding 
elements, of the matrices on the two sides of tne equality 
sign' of .equation (IS), the following al/tebraic equations are 
obtained:' .•'"•"•' 

-. 2x v+ y +s a 8 

x + 2y + i = 9 

x + y + 2s « 7 

(1) 

which are indeed identical with equations (1). 

It should be noted that when the matrix equation (13) la 
transformed Into three simultaneous algebraic equations, the 

• ;-,-* *»*A?,X**V>'- 
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matrix 1« read "downward," not from the left to the right, 
In agreement with the rules of matrix multiplication. for 
instance, the matrix equation 

I 

I I 
I , 

[*, y,   ij *      12 3 

5 4  2 

-   fl.   0,   3j 

2 3  3_ 

Is  equivalent   to  the  three  algebraic  equations 

x + 5y + 2s * 1 

2x + 4y + 3 s =• 0 

3x  + 2y +  2s  • 3 

and not   to 

,1" 

• 1.- 

• t-   i   • 

x+2y+3s=l 

+  •,   '5» +-4y + 2r • 0 

2x + I3y + '3s  • '3 

This  distinction   cannot   be   noticed  In  the.case   of  equa- 
tion   (13),   since  there  the   square matrix  i.e. "symmetric, " 
which means  that   elements  In  it   are  aqual   if  they are   sym- 
metric-ally  situated  to  t-he  principal  diagonal.     The  "princi- 
pal  diagonal"   of a   square  matrix  is  the diagonal  passing  from 
top left   to bottom  right. 

The   following results  of matrix multlnllcation are  worth 
noting; 

(1)  The matrix 

10 0 

0 10 

0 0 1 I 
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'a.' *• 
l * P 

0 1 

ll th« Identity ..Matrix of the. second ordar.  An Identity ma- 
trix of any'other order Is Refined In a similar manner:  It 
lea square matrix having 1 for lte principal diagonal -:ele- 
•enti, and 0 for all the other elements.  Sow, application of 
the rule of matrix multiplication shows that 

«a« 

t 4   l" i o o' t A l" 
6 6  7 K 0 10 • 6  6  7 
18 3 

1 0  0  1 12 3 

10 0 

0 10 

0 0 1 

It can be seen that any square matrix remains unchanged 
upon preaultlplloatlon or poatmultlpllcatlon by the.Identity matrix of the same order. 

* ._ 
333] 

m 2  0  1 

1   3 3  J 

(a) MuitiPncatIon yI#ldg 

«• o*h.r word., „ltMlr^M by the ^^ 
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left the first and third columns of the first matrix un- 
ohanged, «ad transformed the second coluan Into the «um of 
tha original fir it and second columns.  In a similar way. It can be seen that 

0r in other VOM. 
"' ""»««Plication by the ..tri, 

left the first and third columns of the first matrix un- 
changed, and transformed the second column Into the sum of 
the original second column and one-half of the original first column. Also, 

|        •••«.. ....«.,„„..„„ b, th# Mipii 

-i 
\ 
\ 
1 

•i 
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left the.first and eeeond column» of the firet matrix un- 
changed, and transformed the third column Into the «um of the 
original third, and three time« the original eeeond eolumna. 
It may be etated, therefore: 

Poetoultlpllcat1 on by a matrix In which all principal 
. diagonal elements are unity, the element In the  pth  row and 
1 "qth column le k,  and all the other elements are zero, la 
equivalent to an addition to the  qth column of the original 
matrix of  k  tloee the  pth  column of the original matrix. 

The effect of several nonvanlshlng elements off the - 
principal diagonal can he understood froic the example: 

I 

12 1 110 13  6 

o a i X 0 18 m 0  3 6 

8 0 1 0 0 1 2  2 1 - 

Here,  poetsmltlplleatlon by, the matrix 

110 

0 18 

0 0 1 

left the first, column unchanged, attfted1 W Ibr second column -; 
the first column, and added to the third column the double of 
the eeeond column.  The knowledge gained from these examples 
may he utilised In the transformation of a set of linear 
equations. - '•" • 

In order to solve the matrix equation (13) for the un- 
knowns  x, y,  and  i,  both sides of the eauatlon are first 
postmultlplled by the matrix 

1  -0.5 

0   1 

0 0 
i» v 

-0.5 

0 

1 

> - 
- i 

(16) 
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Postaultlpllcatlon mean» that  Mj  It written a« a factor 
behind the members of.the equation; 

[*• 7,   •] X 3 11 1 

18 1 0 

113 0 

-0.5 -0.6 

1    0 

0   1 

[8. 9, 7] x .0.5 -0.5 

1    0 

0   1 

(17) 

It wae shown In equations (13) that the order of factora In a 
Matrix product.Is o-f 'great Importance.  The reeult of a post- 
multiplication differs, In general, from those of a "premulti- 
pllcatlon" In which latter the same factor  Mx  would be 
written before the members of equation (13).  The rule for the 
construction of Mj  is as .follows: 

(l) 7111 In the principal diagonal; that Is, the diagonal 
of the matrix running from top left to bottom 
right, with the digit 1; 

(3) Till In the remaining places In the first row with 
the corresponding values of the original matrix 
divided by the flret element In the first row of 
the original matrix (in the present example 3) 
and by -1; 

(3) All the remaining elements of 
in with 0. 

are to be filled 

If the matrix multiplication, la carried- out, the follow- 
ing result is obtained ?•• 

[*. y. iJ x 3  0   0 

1 1.5 0.5 

1 0.5 1.5 

=• [8. 5, 3] (18) 

This equation can be written In ran equivalent row matrix form, 
if so desired: 

t(3x + y + s),  (l.6y • 0.5«),  (0.6y • 1.6a)] » [8. 6, 3] (19) 
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as 

•* • 7" •   1-8 
1-67 +  0.6«  •  5 

°-67 +  1.8«  •  3 
(30) 

It  will   be  reoognlied  that  the  fir»t   of aquation*  (20)   la  tha 
«ana aa  tha  flrat   of  equations   (1),   while  tha   aeeond and   tha 
third  of  aouatlona   (20)   are   identical   with  aquation«   (3a)   and 
(3b),   respectively.     In   other  words,   poet multiplicatIon   by 
Hj     aehlarad  exactly  tha   lame tranaforient ion  of  the   «ystem  of 
aquation«  a« did  the algebraic  operation  that   originally re- sulted In  aquatlona   (3). 

Tha  matrix  operation« can  now be  continued  by the appli- 
cation  of  one more  poatmultlpller     Ma    defined  aa 

loo 

0    0    -0.33 

I 0    0      1 
(SI) 

*o.t,uUiPliCation  of aquatloa 

»*»'   i«  indicated a«  follow«: 

[*•   Y,   •]   x 3    0      o 

1  1.5  0.5 

1   0.5 l.s 

100     ]• te, 5. 3] xi'i o' 
0 1  -0.33 

0  0     1 

«•«  it   1«  carried  out,   ü.  ra.ult   i.: 

0  1  -0,33 

0.0     1 

J 

(Sa) 

[** y.  «j x 8 0 0 

1 1.5 o 

1   0.5. 1.333 

"  C8.   5,   1.333J (23) 

7 
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Iquatlon (83} may be written in the row-matrix form: 

[(2x •*+•>.  (I.67 + O.Si),  (1.333c)] - [S, 6, 1.333] (24) 

This matrix equation is equivalent to the three simultaneous 
algebraic equations 

2x *  y + t  • 6 

1.5y + 0.5s • 5 

1.333s - 1.333 

(S5) 

l| 

I I 

'.:• 

Comparison reveals that the flret two of equations (36) are 
Identical with the first two of equations (20).  Consequently, 
the first of equations (25) Is the sane as the first of equa- 
tion (l), and the second of equations (25) ie the same as 
equation (3a).  The third of equations (25) is Identical with 
equation (5). 

Thus, it has been shown that the two slatrlx multiplica- 
tions'Indicated In equations (17) and (22), respectively, re- 
sult In the same set of linear equations as those obtained by 
the use of methods of hirh school algebra.  The characteris- 
tic property of the set of equations (25) is that the last 
equation contains one, the middle oca two, and the flret one 
three unknowns.  Because of this property the equations can 
be easily solved one by one,   as was done in equations (6) to 
(8).  The square matrix In eauatlon (23) Is Just a convenient 
representation of the left-hand member of equations (25).  It 
falls Into the category known as "triangular" matrices be- 
cause all Its elements are sero on one side of the principal 
diagonal. 

It Is, therefore, the purpose of the postmultlpllcations 
to transform the original aatrix Into a triangular matrix, 
which can be solved then by elementary algebra without any 
difficulty. 

The procedure as developed here may seem to be lengthy. 
A considerable part of the material presented, however, was 
purely explanatory and can be omitted from the actual calcu- 
tlons.  The essential features were: 

(l) Representation of the equations by the matrix of 
the coefficients of the unknowns 

I 
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8 i' •     »1 

1 2 'l: 

1 
L 

1 3 

87 

(a) 

and by the row matrix of the right-hand tide 

[fi  B  7] 

(a) Construction of the postaultlplisr 

1 -0.6 -0.6| 

M, -  0  1   0 

0  0   1 , 
according to the rules 

(a) ilenenti of the principal diagonal hare the ralue.1; 

(b) Elements of the first row off the .principal diagonal 
are equal to the corresponding elements of the 
original matrix divided by the principal diagonal 
element of the first -row and by —1; 

(b) 

(e) 

(c) All other elements are 0. 

— •£M:,;£;ii
pii,"*i" ^ •» •* »•« •*. ..^ .*,,, 

2 11 

1 S 1 

112 
J 

C8, 9, 7] x 

1 -0.6 -0.5 

0   1    ö 

0  ;0"   1 : 

.1 

2  0   0 

1 1.6 0.5 

1 0.5 1.6 

[l -0.5 -0.6]   [8.' 5, 3] 

0   1    o 

(d) 

(e) 

f 
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•i''H=r~':^?=;a=":s  

Vfal, •ubaat 

1.5     o. 

0.6     1 

'i* ha 

It •«y be 

•  *o  b« 
(t) 

iT«?r-<«... iV •;..*:. £•'•««»».- •eeordiag t o  the 
°X th 

Jf» 

Pi*»«eriPtl 
'• «atri *    *>. 

!5»...» <;;;;* "•« «• 

-0.33] 
0n  °»ntainea 

(g) 

foi '»«ultipll 

f'1.5 

/0.8 

c»tion  r 

0.6 

1.6 

eeuitg   ln 

1 -O.33 

from th 
)  I 

Th 

a *   «imU 

••  «ubaatrl 
f •» -tri,"  •"•"  th.   fl 

*  «o  obt 
of th 
alned   1 " *»«ht-h 

tret 
and 

rst   o°luaa a»d 

1.6 

.°'6     1.333] 

Ü"-"* >«  b 

r ••• 
th*  flrit 

C*> 

Domber   of 

It »net   bf 

ft. 3j 

P°«»»ultlPilaa  0jr 
*•. 

fe. 3j 1 -0.33 ts. • 333J 

the  tl (6)  Th 

18   omitted 

(k) 

J-Bt "-'•Tt'h.' 2f"-'o*«.d »•o» 
e fI'«t  e,w,;V.« »atrt uan   of  t. 
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equation (h)i 

89 

th e right-hand aide member of 

1     1.5 

L1     0.5     1.333 
(I) 

fin 
(7)  The  oonplete  tranaf 

•t   element   n-p  »>,.   _i _^.   . element   of the   pi  — —»     w*     bug    PI ^n 
«d of the right-hand .id 

ormedrov matrix eonalata of th« 
e member of equation (e), ght-hand   eld 

e  member   of  equation   (h) 

written  a 

[x 

(8)   The   eorapl 

[8,   5,   1.333] 

ete  transformed   matrix  equation  can be 

(m) 

a  combination  of   (l)   and   (m) as  follows: 

•   7, «i x 

1     1.5 

O.f     1.333 

Thi 

"   [8,   6,   1.333] (n) 

e  equation  1»  identical  wit 
•olved  as   explained   bei h  eouatloa   ('33)   and 

ow equation   (33) can  be 

Thi operation,   outlined   in  th .- .„..»   uuuuoa   in  the  preceding  eight  point 
can  be  arranged  concisely according to  the   following  sehe 

scheme; 

-0.5 -0.5.    .. 

1.5 0.5 

0.5     1.5 

1.33! 

-0.33 

1.331 
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h 
i, 
i 

i 

Th» first Una In the scheme represents the original 
rev matrix (b). Below It Is arranged the original square 
matrix (a). To the right is the postuultipller (c) except 
that its first column is omitted.  This first column Is not 
Beaded since It would enter only In the calculation of the 
first column of the matrix product which need not be rewrit- 
ten since it remains unchanged as explained under (4). 

The values under the first full horizontal line are ob- 
tained by postraultiplying the row matrix [8, 9, 7] by the In- 
complete post multiplier.  This poetmultlpllcatIon Is carried 
out exactly according to the rules of matrix multiplication 
given earlier. Because of the incompleteness of the post- 
multiplier only two elements arc obtained In tho product. 
The first Is 

the second 

[8 x (-0.5)] + (9 x 1) + (7 x 0) 

[8 x (-0.5)] + (9 X 0) + (7 x 1) 

Since the omitted first column of the nostmultlpller contained 
the elements 1, 0, 0, multiplication by it would have given 8, 
the unchanged value of the flr°t element of the row matrix. 
This need not be rewritten. 

The square matrix under the row 5, 3 Is computed In a 
similar manner by postmultlplylng the original square matrix 
by the incomplete postaultIpller.  Multiplication of the row 
2, 1, 1 would give: 

.it 

[a x (-0.5)] + (i x i) + (i x o) - o 

[3 X (-0.5)] + (1 x 0) + (1 x 1) - 0 

These two seros need not be listed, 
second row yields 

Multiplication of the 

[1 x (-0.5)] • (2 x 1) + (1 x 0) - 1.5 

[1 x (-0.5)] • (2 x 0) + (l X 1) - 0.5 

These two values are listed in the first row below the dotted 
line. The elements In the second row are obtained in a simi- 
lar manner: 
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[X x (-0.5)] + (l x 1) + (2 x 0) - 0.5 

[1 x (-0.5)] • (X »  0) • (8 x 1) • 1.5 

The column to the right Is the second coluon of the post- 
multiplier (g).  The first column of this poetmultlpller is 
again omitted as unessential for the computations. 

The last two numbers in the scheme are computed by multi- 
plication by the Incomplete second postmultipller in the same 
manner as described in connection with the preceding opera- 
tions. 

It must be emphasized that the scheme given does not con- 
tain P   complete presentation of the matrix multiplications. 
It Is Just a convenient short-hand reproduction of the compu- 
tations given In more detail under (l) to (8).  Familiarity 
with this scheme of operations makes It possible to reduce 
quickly, with the least amount of time wasted in writing, a 
given set of linear equations to the diagonal form. 

An example is now given, without explanations, for the 
reduction of a set of four equations. 

The equations are«" 

4x + 2y +  i 

2x + 3;- + 2w 

11 

16 

+ 2c • 11 

2y +  • + 11 

The computation? can b> arranged as follows: 

• 
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This matrix equation is:equivalent'to the four algebraic 
equations: 

7 i • 

.•'"•'     ' 

4x + 2y •   t - 11 

2y - 0.5*  + 3w    a 10.5 

1.625  + 1.5w   m 10.875 

- 2.385w = -9.55 

li 

i; 
it* 

The   last   one   of  the  equations  give«  immediately 

Substitution  In  the. preceding equation yields 

1.625s-   10.875  -   6  -  4.875 

Hence,   ... ;!;:•" '   ' 
-•;!•' ••-• '• • ••• •'•- •'•••    • „ • :.. ;.:-'" .....    z  =  3 

Substitution of  v  and  s  In the second equation'result a in - 
'   ' '• ..,.*•.» - _' •        : '. 

.'•'ü,"f     2y « 10.5 -8 + 1.5-4 •'; •• ' '."•.•' 
' • • ,,' '; "l';: ' ' ' 

Consequently, 

y = 2 

Finally, there Is obtained, 

4x» 11 -3-4 = 4 . '.'.--. 

and thus, 

X » 1-, ,.' •  • -t'       -. 

»'hen the number of simultaneous linear equations Is' 
large, the computational work is greatly reduced'by the use 
of a calculating machine.  A calculating machine may become 
necessary also for rea.son« of accuracy, when the computations 
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I , 

happen to Involve small difference« of large numbers.  An ex- 
ample Is now given for t'.s solution of seven equations with 
s( "ar.  unknowns.  Tin conations represent the problea of the 
egg-shape ring with «.vaittric loads. 

In this example, as in all the matrix comoutotlone of 
this report, the. work of writing was further reduced by the 
adoption af th<j teil owing BC>ieme.  Instead of writing out the 
entire inatrix atfitiitll.ei , jrii/ the first yov  is Fut down, and 
even the first eltmect of the first row is yoitted.  It may- 
be renembered that all the elements omitted are either equal 
to unity, or to sero. 

The first row.in tablo 17 eon 
nal loeds of the egg-shape ring wl 
following seven rovij, unier the do 
with the rows of the operations ta 
row, under the soMd line .and lncl 
seats the multipliers. They are ( 
talned by dividing the elements of 
dotted line, except tha first"alea 
first element of the first row. T 
-(8.92215)/(-3.34S33) = 2.66456. 
column (in the column of 9.92216). 
In the third, fourth, and so forth 

tains (-1) times the exter- 
th symmetric loads.  The 
ttod lino, are Identical 
bin (table 6).  Tee next 
uded in parentheses, pre- 
ll times the ratios ob- 
the first row under the 

ent of this row, by the 
he first ratio, 
is listed in the second 
The other ratios follow 
columns. 

i   . The rov; ander the rat 1 os contains the transformed exter- 
nal loads.  The value In the  1th  column of this row is ob- 
tained by multiplying the. first element In the first row of 
the table by the multiplier in the  1th  column and adding to 
the product algebraically the value of the element in the 
first row and the  1th  column.  Thus, for instance', in the 
seeond column the value 133.233 was calculated as follows: 

2.66466 x 50 + 0 = 133.233 

It may be seen that In this manner only six transformed ex- 
ternal load elements are obtained from the original seven 
external load elements. 

Following the same rule, the original eeven-by-seven 
matrix is transformed into the six-by-six matrix contained 
between the second dotted line and the second full ones.  Tor 
instance, the element In the fourth'column and-the thirteenth 
row of the entire table was computed as follows: 

3.96771 x 1.18498 - 30.9666 - -26.2549 
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This «eherne is followed until the external load elements 
are reduced to a single element, and the matrix is also re- 
duced to a single element.  The leading columns represent then 
the equations of the triangular system.  Tor instance, the 
leading column of the third step say be written as 

-1.77854 vB • 0.804688 uB - 8.96572 W0 + 0.775767 T0 - -38.3834 

The leading column of the sixth step isi 

-1.034345 vc - 0.S54970 uc - -19.2443 

I I 
I , 

The full set of these equations can he solved as shown 
earlier. 

As a second example of the procedure actually used in 
the calculations, table 18 is presented.  It contains the 
transformation of the matrix of the circular ring with anti- 
symmetric loads. 

More Information on matrices, written fru the etandpoint 
of the person interested in applications of the matrix calcu- 
lus to problems in physics and engineering, may be found in 
"filementary Matrices and Some Applications to Dynamics and 
Differential Aquations" by H. A. 7raser, *. J. Duncan, and 
A. fi. Collar (University Press, 1938).  The procedure used in 
the present report can be shortened further if advantage is 
taken of the fact that all the matrices discussed in this re- 
port can be set up in a symmetric form.  Such a simplified 
procedure was suggested by K. H. Doolittle in "Method Employed 
in the Solution of formal Aquations and the Adjustment of a 
Triangulation," U. 8. Coast and Geodetic Survey Report, 1878, 
pp. 115-120.  A discussion of the Doolittle technique may be 
found in an article by Pnul S. Dwyer in the December 1941 
ISJUO of ' ; - Annals cf Mathematical Statistics, Vol. XII, Bo. 
4, pp. 4*itl-458.  A ::.ore aodern appror.ch to the solution of 
simultaneous equations arising in engineering ir eiven in the 
paper "A Short Method for Evaluating Determinants and Solving 
Systen.s of Linear Equations with Heal or Ooiplex Cce'ficients" 
by Prescott D. Crout  Transactions A.I.E.2., vol. P0, 19*1 
p. 1235. 
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Table  12. Relaxation Table for Circular Hing 

Operation N 
A 

In.lb. 

T 
A 

lb. 

NB 
in.-lb. 

«B 
lb. 

B 
lb. in.-lb. 

C 
lb. 

External 
loads 

0.42C6] 

-76.2[7] 

-2.0(3] 

lW 

-60C73 

-o.3s[e] 

-o.9o[sD 

o.lW 

-0.l[6l 

) 
-0.06[3] 

o.oscil 

-4.87t2Ü 

Results of 
a check 
tablo 

-1.836 -8.747 -64.970 

23.75 

59.476 

3.71 

38.104 

2.78 

-53.135 

-66.4 

-23.860 

-0.655 

-1.8o -8.75 -31.22 
-505 

63.19 
-39.9 

40.88 
-5.21 

-119.5 
119.2 

-24.5 
24.6 

-1.84 
60.0 

-8.75 
-129.4 

-536.2 
880 

23.3 
-62.8 

35.67 
101.2 

-0.3 
-113.0 

0.1 
-13.26 

58.2 
-282 

-138.16 
-49.1 

343.8 
-30.0 

-39.5 
-4.7 

136.87 
64.7 

-113.3 -13.2 

-223.8 -187.3 313.8 
-398.0 

-44.2 
-31.4 

201.6 
-4.1 

-113.3 
93.9 

-13.2 
19.3 

-223.8 -187.3 -84.2 
-19.8 

-76.6 
-3.1 

197.5 
-2.3 

-19.4 
55.4 

6.1 
0.55 

-223.8 
27.0 

-187.3 
-58.3 

-104.0 
396 

-78.7 
-28.3 

195.2 
45.5 

36.0 
-50.9 

6.65 
-5.96 

-196.8 
-28.2 

-245.6 
-4.9 

292 
-3.0 

-107.0 
-0.5 

240.7 
6.5 

-14.9 0.69 

-225.0 -250.5 289 
-5.6 

-107.5 
-0.9 

247.2 
-0.7 

-14.9 
15.8 

0.69 
0.16 

-226.0 
Lit 

-250.5 
-3.9 

283 
28.4 

-108.4 
-1.9 

246.? 
3.04 

0.9 
-3.24 

0.87 
-0.04 

-223.2 
-14.1 

-254.4 
-2.5 

31.14 
-1.5 

-110.3 
-0.2 

219.54 
3.23 

-2.34 0.83 

-237.3 
239 

-256.9 
255 

309.9 
-316 

-110.5 
109.3 

262.77 
-251 

-2.34 0.83 

1.6 

1.637 

-1.9 

-1.944 

-6.1 

-7.246 

-1.2 

-1.37 

1.77 

1.969 

-2.34 

-2.792 

0.83 

0.412 
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Table 14. Relaxation Table for Braoed Clroular Ring 

Operation 
A 

in.-lb. 
A 

lb. 
B 

in.-lb. 

R 
B 

.lb. 
B 

lb. 
C 

in.-lb. 

T 
C 

lb. 

External 
loads 

-0.4C6D 

-8.3l73 

-0.37513l 

o.itil 

-0.24[4l 

-o.osUl 

0.064L1] 

0.l[4l 

o.oiUl 

Results of 
a oheck 
table 

-1.835 -8.747 -54.970 
-19.92 

59.476 
-3.46 

38.104 
-2.85 

-53.135 
66.6 

-23.860 
0.424 

-1.835 -8.75 -74.89 
-69.15 

66.026 
-64.05 

35.254 
-25.1 

15.46 
8.80 

-23.436 
27.6 

-1.835 
11.25 

-8.75 
-24.25 

-134.04 
170.0 

-8.02 
-11.70 

10.1 
18.8 

24.26 
-18.70 

4.2 
-2.67 

9.41 
-28.2 

-33.0 
-4.9 

36.0 
-3.0 

-19.7Z 
0.47 

28.9 
6.5 

5.56 1.5 

-18.79 
1.14 

-37.9 
6.4 

33.0 
-7.5 

-19.25 
7.13 

35.4 
-3.1 

5.56 
-2.07 

1.5 
-1.85 

-17.65 
1.50 

-32.5 
-3.24 

25.5 
22.6 

-12.12 
-1.56 

32.3 
2.5 

3.49 
-2.49 

-0.35 
-0.356 

-16.15 
-18.05 

-35.74 
-3.14 

48.1 
-1.92 

-13.66 
-0.3 

34.8 
4.15 

1.00 -0.706 

-34.2 
-0.47 

-38.88 
-2.24 

46.2 
3.1 

-13.98 
-2.97 

38.96 
1.30 

1.00 
0.86 

-0.706 
0.771 

-34.67 
-2.82 

-41.12 
-0.49 

49.3 
-0.3 

-16.95 
-0.05 

40.26 
0.65 

1.86 0.065 

-37.49 
39.1 

-41.61 
41.6 

49.0 
-51.5 

-17.00 
17.8 

40.90 
-41.0 

1.86 0.065 

1.6 

1.5217 

0 

-.05656 

-2.5 

-2.4849 

0.8 

-.072270 

-0.1 

0.01066 

1.86 

1.0078 

0.065 

0.00159 
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M>1« 17. Ifctrlx Solution of Bgg-Sh»p»d Hing With Synmotrlc Lead» 

ll 

I / 

»A "B «8 h Hc «c Tc 

60 0         , 0 0 0 0 0 

\ 
"c 

-3".34833~ 8.92216 " =2.69614" "8.9377T 0 ~~0 " 0 
8.98216 -327.866 11.4697 -13.1014 -61.242 6.10267 0 

-2.69614 11.4697 -4.00991 3.4362 -8.10267 0.66166 0 
S.967T1 -IS.1014 3.4582 -30.9566 0 0 26.2058 

0 -61.242 -8.10267 0 -288.367 -2.95622 -5.24667 
0 8.10267 0.661580 0 -2.95622 -1.90205 -0.88929 
0 0 0 26.2056 -6.24667 -0.88929 -27.0833 

(2.66466 -0.806219 1.18498 0 0 0       ) 
133,ESS -40.2610 59.249 0 0 0 

i 
uc     • 

-s"M:o9i- ~ "a."2*8T4~ "2.621Ö5 " -er. 242   " 8.H32T7 "      0 
4.28S40 -1.83893 0.240328 -8.10267 0.66158 0 

-2.52880 0.240325 -26.2549 0 0 26.2058 
-61.242 -8.10267 0 -288.367 -2.95622 -5.24667 
8.10267 0.66158 0 -2.95622 -1.90205 -0.88929 

0 0 26.2058 -6.24667 -0.88929 -27.0833 

(.0140925 -.0083159 -.2013936 .0266455 0      ) 
-38.3834 58.1410 •26.8323 3.65006 0 

2 
-f. 77864 0.2046r -8.96572 .775767 0 
0.204688 -26.2339 0.50926 -.0673811 26.2068 
-«.9657a .609282 •276.033 -4.68804 -6.24667 
0.775767 -.0673810 -4.688046 -1.68616 •0.88929 

i 0 26.2068 -6.24667 -0.88929 •27.0833 

(.1150868 -6.041056 0.4361819 0       ) 
63.7235 166.661 •13.1921 0 

uc 

-IS.ZIÖS" ' -0762256- -.62r9oor 26.2068 
-0.52267 -230.836 •8.49872 -5.24667 
.021901 -8.49873 -1.34777 -0.88929 

26.2058 -5.24667 -0.88929 -27.0833 

(-.0199372 .000835549 )  0.999828 
165.590 -13.1472   1 53.71426 

WC 
TC 

-zsff.ssr -•S.SSSiB • ^r76?06~ 
-8.49917 -1.34779 -0.867393 

uc -5.76914 -0.867394 -0.882007 

(-.0368206 -.02499353) 
-19.2443 49.67559 

'„ -I.OS4S45" -0.054970" 

4 -0.654970 -0.737816 

(-.632915) 
61._75560_ 

uc 0.3232757 
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Imbl« 16. Mttrlx Solution for ClrouUr Ring With Antliymaatrio Load» 

l| 

\ 
TA MB *B 

TC 

1.83607 
-2"8l."96B~ " 
-49.079 
-29.966 
•4.7334 
64.676 

8.74716 
"2.9.079" " 

-52.296 
64.675 

-22.441 
51.516 

54.9703 
-29.96? 
64.675 
-453.287 
31.2346 
-50.1390 

-59.4762 
-T.7334 
-22.441 
31.2348 

-29.6649 
12.9752 

-38.1038 
?4.6?5 
51.616 

-50.1390 
12.9752 

-55.6152 

(-.17407 
8.4277 
•^"S^BScT 
69.89118 
-21.61706 
40.25804 

-.10628 
54.77527 
69~.8~9mr " " 
-450.1022 
31.7379 
-57.0127 

-.016788 
-59.6070 
-2176lf08 " 
31.7379 
-29.5854 
11.88943 

.2293846) 
-37.6829 

" ~4"0."25F0~ 
-57.01275 
11.88943 
-40.7797 

(1.69744 
68.23776 
^3587457" ~ 
-2.7934 
7.29590 

-.»94073 
-63.6709 

" ~=2."7S34~ 
-18.9050 
-8.00098 

0.920124) 
-29.92837 

-772?5ro~ 
-8.00096 
-3.73731 

(-.00825334 
-64.23409 
'lfi.88T9S 
-8.06119 

.02155606) 
-28.4574 

*     -870611? 
-3.58004 

• 
(-0.4269241) 
-1.03431 
-,138"52~ " 
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Flgs. 1,2,3 

SECTION D-D 

(ENLARGED) 

I- 
 f 

24 ST ALUM. ALLOY 

HG. I.   CURVED BEAM. 

FIG. 2.   ARC AB 
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Fig. 5 

SECTION E-E 
(ENLARGED) 

HG. 5   EGG-SHAPED RING WITH SYMMETRIC LOADS. 
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Figs. 6,7 

I.  BEAM CONVENTION b. RIGID FRAME CONVENTION 
(FORCES ACT UPON BEAM) (FORCES ACT UPON CONSTRAINTS) 

FIG. 6 SIGN CONVENTIONS FOR FORCES AND MOMENTS. 

a.  ACCORDING TO BEAM 
CONVENTION. 

b. ACCORDING TO FRAME 
CONVENTION. 

ic ic 
FIG. 7 POSITIVE FORCES AND MOMENTS AT POINT  B. 



;?;   •* *  *>        • ,, - --;-•••' •-**-- •  •':•••••,. ~ 

wKWJgkii&Kfc. sft% •?•• ^l-***3 

^..-.- .j^'-, 

h 

Fig. 8 

ORIGINAL SHAPE 

FIG. 8   DEFLECTED SHAPE OF EGG-SHAPED RING 
WITH SYMMETRIC LOADS. 
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I NACA TN No. 998 Figs. 10, II 
\\y 

ca 
16 

IS 

7     SECTION  D-D (ENLARGED) 

q=U25 LB/IN 

FIG. 10. 

CIRCULAR RING WITH ANTISYMMETRIC LOADS. 
t 

i   I 

r 

f FIG.U. 
NOTATION FOR ANALYTIC  SOLUTION OF 

RING  PROBLEM. 
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BENMNG M0MENT »ST— - OBU»  R(NG. 
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100*  |A Pifli. 13,14 

i"M 
i 

ofc 
Hf 

SECTION  D-D 
(ENLARGED) 

SECTION E-E 
(ENLARGED) 

1 ^ FIG.  13. 

BRACED CIRCULAR RING WITH ANTISYMMETRIC LOADS. 

A 

f KUJ 

(a) RESOLUTION OF   TANGENTIAL   DISPLACEMENT. 
(b) BEAM   CONVENTION   FOR   STRAIGHT   BAR. 
(C)    RESOLUTION   OF  RADIAL   FORCE. 
(0)   RESOLUTION   OF  TANGENTIAL   FORCE. 

FIG. 14. 
RESOLUTION OF DISPLACEMENTS AND FORCES. 
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Fig. 16 

FIG. 16. 

BENDING MOMENT DIAGRAM OF BRACED CIRCULAR  RING. 
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FIG. 17   EGG-SHAPED RING WITH ANTISYMMETRIC LOADS. 
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FIG. 19  BRACED EGG-SHAPED RING WITH 
ANTISYMMETRIC   UOADS. 
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Fig. 20 

FIG. 20  BENDING MOMENT DIAGRAM OF BRACED 
EGG-SHAPED RING IN TORSION. 
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